1
|
Luo Z, Yi X, Jiang Y, Luo N, Liu B, Zhong Y, Tan Q, Jiang Q, Liu X, Chen S, Lu Y, Pan A. Efficient Energy Transfer Enabled by Dark States in van der Waals Heterostructures. ACS NANO 2024; 18:31215-31224. [PMID: 39470132 DOI: 10.1021/acsnano.4c09403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Dark exciton states show great potential in condensed matter physics and optoelectronics because of their long lifetime and rich distribution in band structures. Therefore, they can theoretically serve as efficient energy reservoirs, providing a platform for future applications. However, their optical-transition-forbidden nature severely limits their experimental exploration and hinders their current application. Here, we demonstrate a universal dark state nonlinear energy transfer (ET) mechanism in monolayer WS2/CsPbBr3 van der Waals heterostructures under two-photon excitation, which successfully utilizes the enormous energy reserved in the dark exciton state of CsPbBr3 to significantly improve the photoelectric performance of monolayer WS2. We first propose the scenario of resonant ET between the dark state of CsPbBr3 and WS2, and then reveal that this is a typical Förster resonant ET and belongs to the 2D-2D category. Interestingly, the dark state ET in CsPbBr3 is identified as a long-range donor-bridge-acceptor hopping mode, with a potential distance exceeding 200 nm. Finally, we successfully achieve nearly an order of magnitude enhancement in the near-infrared detection performance of monolayer WS2. Our results enrich the theory of dark exciton states and ET, and they provide a way of using dark exciton states for future practical applications.
Collapse
Affiliation(s)
- Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Xiao Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ying Jiang
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Nannan Luo
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Bingjie Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yangguang Zhong
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qin Tan
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Qi Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuerui Lu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- School of Physics and Electronics, Hunan Normal University, Changsha 410082, P R China
| |
Collapse
|
2
|
Asaithambi A, Kazemi Tofighi N, Ghini M, Curreli N, Schuck PJ, Kriegel I. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun (Camb) 2023; 59:7717-7730. [PMID: 37199319 PMCID: PMC10281493 DOI: 10.1039/d3cc01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.
Collapse
Affiliation(s)
- Aswin Asaithambi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Nastaran Kazemi Tofighi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Michele Ghini
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
- Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicola Curreli
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ilka Kriegel
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
3
|
Chang YH, Lin YS, James Singh K, Lin HT, Chang CY, Chen ZZ, Zhang YW, Lin SY, Kuo HC, Shih MH. AC-driven multicolor electroluminescence from a hybrid WSe 2 monolayer/AlGaInP quantum well light-emitting device. NANOSCALE 2023; 15:1347-1356. [PMID: 36562246 DOI: 10.1039/d2nr03725d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Light-emitting diodes (LEDs) are used widely, but when operated at a low-voltage direct current (DC), they consume unnecessary power because a converter must be used to convert it to an alternating current (AC). DC flow across devices also causes charge accumulation at a high current density, leading to lowered LED reliability. In contrast, gallium-nitride-based LEDs can be operated without an AC-DC converter being required, potentially leading to greater energy efficiency and reliability. In this study, we developed a multicolor AC-driven light-emitting device by integrating a WSe2 monolayer and AlGaInP-GaInP multiple quantum well (MQW) structures. The CVD-grown WSe2 monolayer was placed on the top of an AlGaInP-based light-emitting diode (LED) wafer to create a two-dimensional/three-dimensional heterostructure. The interfaces of these hybrid devices are characterized and verified through transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. More than 20% energy conversion from the AlGaInP MQWs to the WSe2 monolayer was observed to boost the WSe2 monolayer emissions. The voltage dependence of the electroluminescence intensity was characterized. Electroluminescence intensity-voltage characteristic curves indicated that thermionic emission was the mechanism underlying carrier injection across the potential barrier at the Ag-WSe2 monolayer interface at low voltage, whereas Fowler-Nordheim emission was the mechanism at voltages higher than approximately 8.0 V. These multi-color hybrid light-emitting devices both expand the wavelength range of 2-D TMDC-based light emitters and support their implementation in applications such as chip-scale optoelectronic integrated systems, broad-band LEDs, and quantum display systems.
Collapse
Affiliation(s)
- Ya-Hui Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yen-Shou Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Konthoujam James Singh
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiang-Ting Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
| | - Chiao-Yun Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Zheng-Zhe Chen
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Physics, National Taiwan University, Taipei, Taiwan, Taipei 10617, Taiwan
| | - Yu-Wei Zhang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Yen Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Chung Kuo
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Hsiung Shih
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
4
|
Bai B, Zhang C, Dou Y, Kong L, Wang L, Wang S, Li J, Zhou Y, Liu L, Liu B, Zhang X, Hadar I, Bekenstein Y, Wang A, Yin Z, Turyanska L, Feldmann J, Yang X, Jia G. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chem Soc Rev 2023; 52:318-360. [PMID: 36533300 DOI: 10.1039/d2cs00130f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.
Collapse
Affiliation(s)
- Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Yongjiang Dou
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Jun Li
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Yi Zhou
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Ido Hadar
- Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aixiang Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT 2601, Australia
| | - Lyudmila Turyanska
- Faculty of Engineering, The University of Nottingham, Additive Manufacturing Building, Jubilee Campus, University Park, Nottingham NG7 2RD, UK
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, Munich 80539, Germany
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
5
|
Zeng Y, Dai W, Ma R, Li Z, Ou Z, Wang C, Yu Y, Zhu T, Liu X, Wang T, Xu H. Distinguishing Ultrafast Energy Transfer in Atomically Thin MoS 2 /WS 2 Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204317. [PMID: 36148858 DOI: 10.1002/smll.202204317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Van der Waals semiconducting heterostructures, known as stacks of atomically thin transition-metal dichalcogenide (TMD) layers, have recently been reported as new quantum materials with fascinating optoelectronic properties and novel functionalities. These discoveries are significantly related to the interfacial carrier dynamics of the excited states. Carrier dynamics have been reported to be predominantly driven by the ultrafast charge transfer (CT) process; however, the energy transfer (ET) process remains elusive. Herein, the ET process in MoS2 /WS2 heterostructures via transient absorption microscopy is reported. By analyzing the ultrafast dynamics using various MoS2 /WS2 interfaces, an ET rate of ≈240 fs is obtain, which is not trivial to the CT process. This study elucidates the role of the ET process in interfacial carrier dynamics and provides guidance for engineering interfaces for optoelectronic and quantum applications of TMD heterostructures.
Collapse
Affiliation(s)
- Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Wei Dai
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Rundong Ma
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Cheng Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Yiling Yu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoze Liu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- School of Microelectronics, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Karmakar A, Al-Mahboob A, Petoukhoff CE, Kravchyna O, Chan NS, Taniguchi T, Watanabe K, Dani KM. Dominating Interlayer Resonant Energy Transfer in Type-II 2D Heterostructure. ACS NANO 2022; 16:3861-3869. [PMID: 35262327 DOI: 10.1021/acsnano.1c08798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Type-II heterostructures (HSs) are essential components of modern electronic and optoelectronic devices. Earlier studies have found that in type-II transition metal dichalcogenide (TMD) HSs, the dominating carrier relaxation pathway is the interlayer charge transfer (CT) mechanism. Here, this report shows that, in a type-II HS formed between monolayers of MoSe2 and ReS2, nonradiative energy transfer (ET) from higher to lower work function material (ReS2 to MoSe2) dominates over the traditional CT process with and without a charge-blocking interlayer. Without a charge-blocking interlayer, the HS area shows 3.6 times MoSe2 photoluminescence (PL) enhancement as compared to the MoSe2 area alone. In a completely encapsulated sample, the HS PL emission further increases by a factor of 6.4. After completely blocking the CT process, more than 1 order of magnitude higher MoSe2 PL emission was achieved from the HS area. This work reveals that the nature of this ET is truly a resonant effect by showing that in a similar type-II HS formed by ReS2 and WSe2, CT dominates over ET, resulting in a severely quenched WSe2 PL. This study not only provides significant insight into the competing interlayer processes but also shows an innovative way to increase the PL emission intensity of the desired TMD material using the ET process by carefully choosing the right material combination for HS.
Collapse
Affiliation(s)
- Arka Karmakar
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Abdullah Al-Mahboob
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Christopher E Petoukhoff
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Oksana Kravchyna
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Nicholas S Chan
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Keshav M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Amsterdam SH, Stanev TK, Wang L, Zhou Q, Irgen-Gioro S, Padgaonkar S, Murthy AA, Sangwan VK, Dravid VP, Weiss EA, Darancet P, Chan MKY, Hersam MC, Stern NP, Marks TJ. Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. J Am Chem Soc 2021; 143:17153-17161. [PMID: 34613735 DOI: 10.1021/jacs.1c07795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lattice defects play an important role in determining the optical and electrical properties of monolayer semiconductors such as MoS2. Although the structures of various defects in monolayer MoS2 are well studied, little is known about the nature of the fluorescent defect species and their interaction with molecular adsorbates. In this study, the quenching of the low-temperature defect photoluminescence (PL) in MoS2 is investigated following the deposition of metallophthalocyanines (MPcs). The quenching is found to significantly depend on the identity of the phthalocyanine metal, with the quenching efficiency decreasing in the order CoPc > CuPc > ZnPc, and almost no quenching by metal-free H2Pc is observed. Time-correlated single photon counting (TCSPC) measurements corroborate the observed trend, indicating a decrease in the defect PL lifetime upon MPc adsorption, and the gate voltage-dependent PL reveals the suppression of the defect emission even at large Fermi level shifts. Density functional theory modeling argues that the MPc complexes stabilize dark negatively charged defects over luminescent neutral defects through an electrostatic local gating effect. These results demonstrate the control of defect-based excited-state decay pathways via molecular electronic structure tuning, which has broad implications for the design of mixed-dimensional optoelectronic devices.
Collapse
Affiliation(s)
- Samuel H Amsterdam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Teodor K Stanev
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Luqing Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Qunfei Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Suyog Padgaonkar
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Akshay A Murthy
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Pierre Darancet
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Maria K Y Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathaniel P Stern
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Humayun MH, Hernandez-Martinez PL, Gheshlaghi N, Erdem O, Altintas Y, Shabani F, Demir HV. Near-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103524. [PMID: 34510722 DOI: 10.1002/smll.202103524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Silicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2 O3 ) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d-1 with 25% efficiency at a donor-acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.
Collapse
Affiliation(s)
- Muhammad Hamza Humayun
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Pedro Ludwig Hernandez-Martinez
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Negar Gheshlaghi
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
9
|
James Singh K, Ahmed T, Gautam P, Sadhu AS, Lien DH, Chen SC, Chueh YL, Kuo HC. Recent Advances in Two-Dimensional Quantum Dots and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1549. [PMID: 34208236 PMCID: PMC8230759 DOI: 10.3390/nano11061549] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/28/2023]
Abstract
Two-dimensional quantum dots have received a lot of attention in recent years due to their fascinating properties and widespread applications in sensors, batteries, white light-emitting diodes, photodetectors, phototransistors, etc. Atomically thin two-dimensional quantum dots derived from graphene, layered transition metal dichalcogenide, and phosphorene have sparked researchers' interest with their unique optical and electronic properties, such as a tunable energy bandgap, efficient electronic transport, and semiconducting characteristics. In this review, we provide in-depth analysis of the characteristics of two-dimensional quantum dots materials, their synthesis methods, and opportunities and challenges for novel device applications. This analysis will serve as a tipping point for learning about the recent breakthroughs in two-dimensional quantum dots and motivate more scientists and engineers to grasp two-dimensional quantum dots materials by incorporating them into a variety of electrical and optical fields.
Collapse
Affiliation(s)
- Konthoujam James Singh
- Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (K.J.S.); (A.S.S.)
| | - Tanveer Ahmed
- Department of Electrical Engineering and Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (T.A.); (D.-H.L.)
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Annada Sankar Sadhu
- Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (K.J.S.); (A.S.S.)
| | - Der-Hsien Lien
- Department of Electrical Engineering and Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (T.A.); (D.-H.L.)
| | - Shih-Chen Chen
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Hao-Chung Kuo
- Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (K.J.S.); (A.S.S.)
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan
| |
Collapse
|
10
|
Panuganti S, Besteiro LV, Vasileiadou ES, Hoffman JM, Govorov AO, Gray SK, Kanatzidis MG, Schaller RD. Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. J Am Chem Soc 2021; 143:4244-4252. [DOI: 10.1021/jacs.0c12441] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shobhana Panuganti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Montreal, Quebec H5A 1K6, Canada
| | - Eugenia S. Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander O. Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | | | - Mercouri G. Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D. Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Bradac C, Xu ZQ, Aharonovich I. Quantum Energy and Charge Transfer at Two-Dimensional Interfaces. NANO LETTERS 2021; 21:1193-1204. [PMID: 33492957 DOI: 10.1021/acs.nanolett.0c04152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Energy and charge transfer processes in interacting donor-acceptor systems are the bedrock of many fundamental studies and technological applications ranging from biosensing to energy storage and quantum optoelectronics. Central to the understanding and utilization of these transfer processes is having full control over the donor-acceptor distance. With their atomic thickness and ease of integrability, two-dimensional materials are naturally emerging as an ideal platform for the task. Here, we review how van der Waals semiconductors are shaping the field. We present a selection of some of the most significant demonstrations involving transfer processes in layered materials that deepen our understanding of transfer dynamics and are leading to intriguing practical realizations. Alongside current achievements, we discuss outstanding challenges and future opportunities.
Collapse
Affiliation(s)
- Carlo Bradac
- Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 0G2, Canada
| | - Zai-Quan Xu
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
12
|
Irgen-Gioro S, Yang M, Padgaonkar S, Chang WJ, Zhang Z, Nagasing B, Jiang Y, Weiss EA. Charge and energy transfer in the context of colloidal nanocrystals. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0033263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Muwen Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Suyog Padgaonkar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Woo Je Chang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Zhengyi Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Benjamin Nagasing
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Yishu Jiang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
13
|
Tang SY, Yang CC, Su TY, Yang TY, Wu SC, Hsu YC, Chen YZ, Lin TN, Shen JL, Lin HN, Chiu PW, Kuo HC, Chueh YL. Design of Core-Shell Quantum Dots-3D WS 2 Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS NANO 2020; 14:12668-12678. [PMID: 32813498 DOI: 10.1021/acsnano.0c01264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal dichalcogenides (TMDCs) have recently attracted a tremendous amount of attention owing to their superior optical and electrical properties as well as the interesting and various nanostructures that are created by different synthesis processes. However, the atomic thickness of TMDCs limits the light absorption and results in the weak performance of optoelectronic devices, such as photodetectors. Here, we demonstrate the approach to increase the surface area of TMDCs by a one-step synthesis process of TMDC nanowalls from WOx into three-dimensional (3D) WS2 nanowalls. By utilizing a rapid heating and rapid cooling process, the formation of 3D nanowalls with a height of approximately 150 nm standing perpendicularly on top of the substrate can be achieved. The combination of core-shell colloidal quantum dots (QDs) with three different emission wavelengths and 3D WS2 nanowalls further improves the performance of WS2-based photodetector devices, including a photocurrent enhancement of 320-470% and shorter response time. The significant results of the core-shell QD-WS2 hybrid devices can be contributed by the high nonradiative energy transfer efficiency between core-shell QDs and the nanostructured material, which is caused by the spectral overlap between the emission of core-shell QDs and the absorption of WS2. Besides, outstanding NO2 gas-sensing performance of core-shell QDs/WS2 devices can be achieved with an extremely low detection limit of 50 ppb and a fast response time of 26.8 s because of local p-n junctions generated by p-type 3D WS2 nanowalls and n-type core-shell CdSe-ZnS QDs. Our work successfully reveals the energy transfer phenomenon in core-shell QD-WS2 hybrid devices and shows great potential in commercial multifunctional sensing applications.
Collapse
Affiliation(s)
- Shin-Yi Tang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Chuan Yang
- Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Teng-Yu Su
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzu-Yi Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shu-Chi Wu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chieh Hsu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ze Chen
- Department of Material Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tzu-Neng Lin
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Ji-Lin Shen
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Heh-Nan Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Wen Chiu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Chung Kuo
- Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Taghipour N, Delikanli S, Shendre S, Sak M, Li M, Isik F, Tanriover I, Guzelturk B, Sum TC, Demir HV. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nat Commun 2020; 11:3305. [PMID: 32620749 PMCID: PMC7335098 DOI: 10.1038/s41467-020-17032-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 05/28/2020] [Indexed: 11/29/2022] Open
Abstract
Colloidal semiconductor quantum wells have emerged as a promising material platform for use in solution-processable lasers. However, applications relying on their optical gain suffer from nonradiative Auger decay due to multi-excitonic nature of light amplification in II-VI semiconductor nanocrystals. Here, we show sub-single exciton level of optical gain threshold in specially engineered CdSe/CdS@CdZnS core/crown@gradient-alloyed shell quantum wells. This sub-single exciton ensemble-averaged gain threshold of (Ng)≈ 0.84 (per particle) resulting from impeded Auger recombination, along with a large absorption cross-section of quantum wells, enables us to observe the amplified spontaneous emission starting at an ultralow pump fluence of ~ 800 nJ cm-2, at least three-folds better than previously reported values among all colloidal nanocrystals. Finally, using these gradient shelled quantum wells, we demonstrate a vertical cavity surface-emitting laser operating at a low lasing threshold of 7.5 μJ cm-2. These results represent a significant step towards the realization of solution-processable electrically-driven colloidal lasers.
Collapse
Affiliation(s)
- Nima Taghipour
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sushant Shendre
- Luminous! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mustafa Sak
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Mingjie Li
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Ibrahim Tanriover
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Burak Guzelturk
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tze Chien Sum
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.
- Luminous! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
15
|
Luo Y, Shan H, Gao X, Qi P, Li Y, Li B, Rong X, Shen B, Zhang H, Lin F, Tang Z, Fang Z. Photoluminescence enhancement of MoS 2/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. NANOSCALE HORIZONS 2020; 5:971-977. [PMID: 32313908 DOI: 10.1039/c9nh00802k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy transfer in heterostructures is an essential interface interaction for extraordinary energy conversion properties, which promote promising applications in light-emitting and photovoltaic devices. However, when atomic-layered transition metal dichalcogenides (TMDCs) act as the energy acceptor because of strong Coulomb interactions, the transferred energy can be consumed by nonradiative exciton annihilations, which hampers the development of light-emitting devices. Hence, revealing the mechanism of energy transfer and the related relaxation processes from the aspect of the acceptor in the heterostructure is key to reducing nonradiative loss and optimizing luminescence. Here, we study the exciton dynamics from the standpoint of the acceptor in MoS2/CdSe quantum rod (QR) heterostructures and realize efficiently enhanced photoluminescence (PL). Through femtosecond pump-probe measurements, it is directly observed that energy transfer from CdSe QRs largely raises the exciton population of the acceptor, MoS2, providing a larger emission "source". In addition, the dielectric environment introduced by CdSe QRs efficiently enhances the PL by suppressing exciton-exciton annihilation (EEA). This study provides new insights for on-chip applications such as light-emitting diodes and optical conversion devices based on low dimensional semiconductor heterostructures.
Collapse
Affiliation(s)
- Yang Luo
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Padgaonkar S, Olding JN, Lauhon LJ, Hersam MC, Weiss EA. Emergent Optoelectronic Properties of Mixed-Dimensional Heterojunctions. Acc Chem Res 2020; 53:763-772. [PMID: 31961121 DOI: 10.1021/acs.accounts.9b00581] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ConspectusThe electronic dimensionality of a material is defined by the number of spatial degrees of confinement of its electronic wave function. Low-dimensional semiconductor nanomaterials with at least one degree of spatial confinement have optoelectronic properties that are tunable with size and environment (dielectric and chemical) and are of particular interest for optoelectronic applications such as light detection, light harvesting, and photocatalysis. By combining nanomaterials of differing dimensionalities, mixed-dimensional heterojunctions (MDHJs) exploit the desirable characteristics of their components. For example, the strong optical absorption of zero-dimensional (0D) materials combined with the high charge carrier mobilities of two-dimensional (2D) materials widens the spectral response and enhances the responsivity of mixed-dimensional photodetectors, which has implications for ultrathin, flexible optoelectronic devices. MDHJs are highly sensitive to (i) interfacial chemistry because of large surface area-to-volume ratios and (ii) electric fields, which are incompletely screened because of the ultrathin nature of MDHJs. This sensitivity presents opportunities for control of physical phenomena in MDHJs through chemical modification, optical excitation, externally applied electric fields, and other environmental parameters. Since this fast-moving research area is beginning to pose and answer fundamental questions that underlie the fundamental optoelectronic behavior of MDHJs, it is an opportune time to assess progress and suggest future directions in this field.In this Account, we first outline the characteristic properties, advantages, and challenges for low-dimensional materials, many of which arise as a result of quantum confinement effects. The optoelectronic properties and performance of MDHJs are primarily determined by dynamics of excitons and charge carriers at their interfaces, where these particles tunnel, trap, scatter, and/or recombine on the time scales of tens of femtoseconds to hundreds of nanoseconds. We discuss several photophysical phenomena that deviate from those observed in bulk heterojunctions, as well as factors that can be used to vary, probe, and ultimately control the behavior of excitons and charge carriers in MDHJ systems. We then discuss optoelectronic applications of MDHJs, namely, photodetectors, photovoltaics, and photocatalysts, and identify current performance limits compared to state-of-the-art benchmarks. Finally, we suggest strategies to extend the current understanding of dynamics in MDHJs toward the realization of stimuli-driven responses, particularly with respect to exciton delocalization, quantum emission, interfacial morphology, responsivity to external stimuli, spin selectivity, and usage of chemically reactive materials.
Collapse
|
17
|
Neema P, Tomy AM, Cyriac J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115797] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Bhattacharya A, Parish CM, Henry J, Katoh Y. High throughput crystal structure and composition mapping of crystalline nanoprecipitates in alloys by transmission Kikuchi diffraction and analytical electron microscopy. Ultramicroscopy 2019; 202:33-43. [PMID: 30933741 DOI: 10.1016/j.ultramic.2019.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Statistically significant crystal structure and composition identification of nanocrystalline features such as nanoparticles/nanoprecipitates in materials chemistry and alloy designing using electron microscopy remains a grand challenge. In this paper, we reveal that differing crystallographic phases of nanoprecipitates in alloys can be mapped with unprecedented statistics using transmission Kikuchi diffraction (TKD), on typical carbon-based electron-transparent samples. Using a case of multiphase, multicomponent nanoprecipitates extracted from an improved version of 9% chromium Eurofer-97 reduced-activation ferritic-martensitic steel we show that TKD successfully identified more than thousand M23C6, MX, M7C3, and M2X (M=Fe, Cr, W, V, Ta; X = C, N) nanoprecipitates in a single scan, something that is currently unachievable using a transmission electron microscope (TEM) without incorporating a precision electron diffraction (PED) system. Precipitates as small as ∼20-25 nm were successfully phase identified by TKD. We verified the TKD phase identification using high-resolution transmission electron microscopy (HRTEM) and convergent beam electron diffraction (CBED) pattern analysis of a few precipitates that were identified by TKD on same sample. TKD study was combined with state-of-art analytical scanning transmission electron microscopy (STEM)-energy dispersive X-ray (EDX) spectroscopy and multivariate statistical analysis (MVSA) which provided the complete crystal structure and distinct chemistries of the precipitates in the steel in a high throughput automated way. This technique should be applicable to characterizing any multiphase crystalline nanoparticles or nanomaterials. The results highlight that combining phase identification by TKD with analytical STEM and modern data analytics may open new pathways in big data material characterization at nanoscale that may be highly beneficial for characterizing existing materials and in designing new materials.
Collapse
Affiliation(s)
- Arunodaya Bhattacharya
- Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.
| | - Chad M Parish
- Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.
| | - Jean Henry
- CEA, DEN-Service de Recherches Métallurgiques Appliquées, Laboratoire d'Analyse Microstructurale des Matériaux, Université Paris-Saclay F-91191, Gif-sur-Yvette, France.
| | - Yutai Katoh
- Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.
| |
Collapse
|