1
|
Wang S, Xie Z, Chen Z, Miao L, Li Y, Zhai Y, Ding T. Photothermophoretic Splitting of Gold Nanoparticles for Plasmonic Nanopores and Nanonets Sensing. J Phys Chem Lett 2024; 15:6568-6574. [PMID: 38885430 DOI: 10.1021/acs.jpclett.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Optical processing of single plasmonic nanoparticles reinvents the way of high-density information storage, high-performance sensing, and high-definition displays. However, such laser-fabricated nanoplasmonics with well-defined hot spots remain elusive due to the diffraction limit of light. Here we show Au nanoparticle (NP) decorated nanopores can be facilely generated with photothermal splitting of single Au NPs embedded in a silica matrix. The extremely high local temperature induced by plasmonic heating renders gradients of the temperature and surface tension around the Au NP, which drives the nanoscale thermophoretic and Marangoni flow of molten Au/silica. As a result, a nanopore decorated with fragmented Au NPs is formed in the silica film, which presents much stronger surface-enhanced Raman scattering as compared to a single Au NP due to the emergence of hot spots. This strategy can be used to generate plasmonic nanopores of various sizes in the silicon nitride (SiNx) films, which further transforms into nanonets at ambient conditions via light-induced reconstruction of silicon nitride membrane. These nanonets can serve as a robust platform for single particle trapping and analysis.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhipeng Xie
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zihao Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Longfei Miao
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yong Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Yao J, Wang C, Zhang C, Ma S, Zhou L, Wang T, Wang Q, Xu H, Ding T. Optoelectronic tuning of plasmon resonances via optically modulated hot electrons. Natl Sci Rev 2024; 11:nwad280. [PMID: 38577663 PMCID: PMC10989291 DOI: 10.1093/nsr/nwad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/03/2023] [Accepted: 09/13/2023] [Indexed: 04/06/2024] Open
Abstract
Fast optical modulation of nanoplasmonics is fundamental for on-chip integration of all-optical devices. Although various strategies have been proposed for dynamic modulation of surface plasmons, critical issues of device compatibility and extremely low efficiency in the visible spectrum hamper the application of optoplasmonic nanochips. Here we establish an optoplasmonic system based on Au@Cu2-xS hybrid core-shell nanoparticles. The optical excitation of hot electrons and their charge transfer to the semiconductor coating (Cu2-xS) lead to lowered electron density of Au, which results in the red shift of the localized surface plasmon resonance. The hot electrons can also transport through the Cu2-xS layer to the metal substrate, which increases the conductance of the nanogap. As such, the coupled gap plasmon blue-shifts with a magnitude of up to ∼15 nm, depending on the excitation power and the thickness of the coatings, which agrees with numerical simulations. All of this optoelectronic tuning process is highly reversible, controllable and fast with a modulated laser beam, which is highly compatible and sufficiently useful for on-chip integration of nanophotonic devices.
Collapse
Affiliation(s)
- Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Cheng Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Song Ma
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Zhou
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ti Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ququan Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongxing Xu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Yao J, Li Y, Wang S, Ding T. Thin-Film-Assisted Photothermal Deformation of Gold Nanoparticles: A Facile and In-Situ Strategy for Single-Plate-Based Devices. ACS NANO 2024; 18:10618-10624. [PMID: 38564362 DOI: 10.1021/acsnano.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Optical-induced shape transformation of single nanoparticles on substrates has shown benefits of simplicity and regularity for single-particle device fabrication and on-chip integration. However, most of the existing strategies are based on wet chemical growth and etching, which could lead to surface contamination with limited local selectivity and device compatibility. Shape deformation via the photothermal effect can overcome these issues but has limited versatility and tunability largely due to the high surface tension of the molten droplet. Here we show gold nanoparticles (Au NPs) can drastically transform into nanoplates under the irradiation of a continuous wave laser (446 nm). We reveal the dielectric thin film underneath the molten Au is critical in deforming the NP into faceted nanoplate under the drive of photothermophoretic forces, which is sufficient to counteract the surface tension of the molten droplet. Both experimental evidence and simulations support this thin-film-assisted photothermal deformation mechanism, which is local selective and generally applicable to differently shaped Au NPs. It provides a facile and robust strategy for single-plate-based device applications.
Collapse
Affiliation(s)
- Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yong Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shuangshuang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Chen H, Fan Y, Shi Z, Liu C, Ran M, Zhai J, Wu J, Wong TM, Ning C, Yu P. NIR-responsive micropatterned nanocomposite functionalized implant for sequential antibacterial and osteogenesis. Colloids Surf B Biointerfaces 2024; 235:113748. [PMID: 38306804 DOI: 10.1016/j.colsurfb.2024.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The long-term durability of the implant is influenced by two significant clinical challenges, namely bacterial infection and fixation loosening. Conventional implant materials have failed to meet the demands of the dynamic process of infectious bone repair, which necessitates early-stage bacterial sterilization and a conducive environment for late-stage osteogenesis. Consequently, there is an urgent requirement for an implant material that can sequentially regulate antibacterial properties and promote osteogenesis. The study aimed to develop a micropatterned graphene oxide nanocomposite on titanium implant (M-NTO/GO) for the sequential management of bacterial infection and osteogenic promotion. M-NTO/GO exhibited a micropattern nanostructure surface and demonstrated responsiveness to near-infrared (NIR) light. Upon NIR light irradiation, M-NTO/GO exhibited effective antibacterial properties, achieving antibacterial rates of 96.9% and 98.6% against E. coli and S. aureus, respectively. Under no-light condition, the micropatterned topography of M-NTO/GO exhibited the ability to induce directed cell growth, enhance cell adhesion and spreading, and facilitate osteogenic differentiation. These findings suggest the successful development of a functionalized micropatterned nanocomposite implant capable of sequentially regulating antibacterial and osteogenesis activity. Consequently, this highly effective strategy holds promise for expanding the potential applications of orthopedic implants.
Collapse
Affiliation(s)
- Haoyan Chen
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Youzhun Fan
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Chengli Liu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Maofei Ran
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Jinxia Zhai
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Jun Wu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Fang C, Li J, Lin B, Wang Y, Yao Y, Chen L, Zeng Y, Li L, Guo L. SERS-Temperature Dual-Mode T-type Lateral Flow Strip for Accurate Detection of Free and Total Prostate-Specific Antigens in Blood. Anal Chem 2024; 96:721-729. [PMID: 38176009 DOI: 10.1021/acs.analchem.3c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Accurate point-of-care (POC) analysis of cancer markers is the essence in the comprehensive early screening and treatment of cancer. Dual-mode synchronous detection is one of the effective approaches to reduce the probability of false negatives or false positives. As a result, this can greatly improve the accuracy of diagnosis. In this work, a surface-enhanced Raman scattering (SERS)-temperature dual-mode T-type lateral flow strip was fabricated to direct and simultaneous POC detection of total and free prostate-specific antigens (t-PSA and f-PSA) in blood. With the advantage of high stability of T-type lateral flow strip and simultaneous acquirement of assay results for t-PSA and f:t PSA ratio, the proposed method has high accuracy in the diagnosis of prostate cancer, especially in the diagnostic gray zone between 4.0 and 10.0 ng/mL. The SERS-temperature dual-signal has a good linear correlation with either f-PSA or t-PSA. To evaluate the clinical diagnostic performance of the proposed method, spiked human serum samples and the whole blood sample were analyzed. The assay results showed good recovery, and compared with traditional electrochemiluminescence immunoassay (ECLIA) method (t-PSA: 43.151; f/t ratio: 0.08), the results obtained by the proposed method were similar (t-PSA: 40.15 (SERS), 36.21 (temperature); f/t ratio: 0.08 (SERS), 0.08 (temperature), but the detection time (15 min) and cost ($0.05) had been greatly reduced. Therefore, the proposed SERS-temperature synchronous dual-mode T-type lateral flow strip has a strong application potential in the field of accurate large-scale diagnostics of prostate cancer on-site by simultaneous POC detection of t-PSA and f-PSA in blood.
Collapse
Affiliation(s)
- Cuicui Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Jing Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Bingyong Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
6
|
Yu T, Liu X, Kang H, Ding T, Cheng R, He J, Sun Z, Zeng M, Fu L. Cutting-Edge Research in Nanoscience and Nanotechnology: Celebrating the 130th Anniversary of Wuhan University. ACS NANO 2023; 17:24423-24430. [PMID: 38095315 DOI: 10.1021/acsnano.3c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Thanks to the fast-paced progress of microscopic theories and nanotechnologies, a tremendous world of fundamental science and applications has opened up at the nanoscale. Ranging from quantum physics to chemical and biological mechanisms and from device functionality to materials engineering, nanoresearch has become an essential part of various fields. As one of the top universities in China, Wuhan University (WHU) aims to promote cutting-edge nanoresearch in multiple disciplines by leveraging comprehensive academic programs established throughout 130 years of history. As visible in prestigious scientific journals such as ACS Nano, WHU has made impactful advancements in various frontiers, including nanophotonics, functional nanomaterials and devices, biomedical nanomaterials, nanochemistry, and environmental science. In light of these contributions, WHU will be committed to serving talents and scientists wholeheartedly, fully supporting international collaborations and continuously driving innovative research.
Collapse
Affiliation(s)
- Ting Yu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Haifeng Kang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Zhijun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, People's Republic of China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
7
|
Wang L, Feng Y, Li Z, Liu G. Nanoscale thermoplasmonic welding. iScience 2022; 25:104422. [PMID: 35663015 PMCID: PMC9156941 DOI: 10.1016/j.isci.2022.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Establishing direct, close contact between individual nano-objects is crucial to fabricating hierarchical and multifunctional nanostructures. Nanowelding is a technical prerequisite for successfully manufacturing such structures. In this paper, we review the nanoscale thermoplasmonic welding with a focus on its physical mechanisms, key influencing factor, and emerging applications. The basic mechanisms are firstly described from the photothermal conversion to self-limited heating physics. Key aspects related to the welding process including material scrutinization, nanoparticle geometric and spatial configuration, heating scheme and performance characterization are then discussed in terms of the distinctive properties of plasmonic welding. Based on the characteristics of high precision and flexible platform of thermoplasmonic welding, the potential applications are further highlighted from electronics and optics to additive manufacturing. Finally, the future challenges and prospects are outlined for future prospects of this dynamic field. This work summarizes these innovative concepts and works on thermoplasmonic welding, which is significant to establish a common link between nanoscale welding and additive manufacturing communities.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Ze Li
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
8
|
Dieperink M, Scalerandi F, Albrecht W. Correlating structure, morphology and properties of metal nanostructures by combining single-particle optical spectroscopy and electron microscopy. NANOSCALE 2022; 14:7460-7472. [PMID: 35481561 DOI: 10.1039/d1nr08130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nanoscale morphology of metal nanostructures directly defines their optical, catalytic and electronic properties and even small morphological changes can cause significant property variations. On the one hand, this dependence allows for precisely tuning and exploring properties by shape engineering; next to advanced synthesis protocols, post-synthesis modification through tailored laser modification has become an emerging tool to do so. On the other hand, with this interconnection also comes the quest for detailed structure-property correlation and understanding of laser-induced reshaping processes on the individual nanostructure level beyond ensemble averages. With the development of single-particle (ultrafast) optical spectroscopy techniques and advanced electron microscopy such understanding can in principle be gained at the femtosecond temporal and atomic spatial scale, respectively. However, accessing both on the same individual nanostructure is far from straightforward as it requires the combination of optical spectroscopy and electron microscopy. In this Minireview, we highlight key studies from recent years that performed such correlative measurements on the same individual metal nanostructure either in a consecutive ex situ manner or in situ inside the electron microscope. We demonstrate that such a detailed correlation is critical for revealing the full picture of the structure-property relationship and the physics behind light-induced nanostructure modifications. We put emphasis on the advantages and disadvantages of each methodology as well as on the unique information that one can gain only by correlative studies performed on the same individual nanostructure and end with an outlook on possible further development of this field in the near future.
Collapse
Affiliation(s)
- Mees Dieperink
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Francesca Scalerandi
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Wiebke Albrecht
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Zhang C, Qi J, Li Y, Han Q, Gao W, Wang Y, Dong J. Surface-Plasmon-Assisted Growth, Reshaping and Transformation of Nanomaterials. NANOMATERIALS 2022; 12:nano12081329. [PMID: 35458037 PMCID: PMC9026154 DOI: 10.3390/nano12081329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Excitation of surface plasmon resonance of metal nanostructures is a promising way to break the limit of optical diffraction and to achieve a great enhancement of the local electromagnetic field by the confinement of optical field at the nanoscale. Meanwhile, the relaxation of collective oscillation of electrons will promote the generation of hot carrier and localized thermal effects. The enhanced electromagnetic field, hot carriers and localized thermal effects play an important role in spectral enhancement, biomedicine and catalysis of chemical reactions. In this review, we focus on surface-plasmon-assisted nanomaterial reshaping, growth and transformation. Firstly, the mechanisms of surface-plasmon-modulated chemical reactions are discussed. This is followed by a discussion of recent advances on plasmon-assisted self-reshaping, growth and etching of plasmonic nanostructures. Then, we discuss plasmon-assisted growth/deposition of non-plasmonic nanostructures and transformation of luminescent nanocrystal. Finally, we present our views on the current status and perspectives on the future of the field. We believe that this review will promote the development of surface plasmon in the regulation of nanomaterials.
Collapse
|
10
|
Laser-Induced Plasmonic Nanobubbles and Microbubbles in Gold Nanorod Colloidal Solution. NANOMATERIALS 2022; 12:nano12071154. [PMID: 35407272 PMCID: PMC9000872 DOI: 10.3390/nano12071154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
In this work, we studied the initiated plasmonic nanobubbles and the follow-up microbubble in gold nanorod (GNR) colloidal solution induced by a pulsed laser. Owing to the surface plasmon resonance (SPR)-enhanced photothermal effect of GNR, several nanobubbles are initiated at the beginning of illumination and then to trigger the optical breakdown of water at the focal spot of a laser beam. Consequently, microbubble generation is facilitated; the threshold of pulsed laser energy is significantly reduced for the generation of microbubbles in water with the aid of GNRs. We used a probing He-Ne laser with a photodetector and an ultrasonic transducer to measure and investigate the dynamic formations of nanobubbles and the follow-up microbubble in GNR colloids. Two wavelengths (700 nm and 980 nm) of pulsed laser beams are used to irradiate two kinds of dilute GNR colloids with different longitudinal SPRs (718 nm and 966 nm). By characterizing the optical and photoacoustic signals, three types of microbubbles are identified: a single microbubble, a coalesced microbubble of multiple microbubbles, and a splitting microbubble. The former is caused by a single breakdown, whereas the latter two are caused by discrete and series-connected multiple breakdowns, respectively. We found that the thresholds of pulsed energy to induce different types of microbubbles are reduced as the concentration of GNRs increases, particularly when the wavelength of the laser is in the near-infrared (NIR) region and close to the SPR of GNRs. This advantage of a dilute GNR colloid facilitating the laser-induced microbubble in the NIR range of the bio-optical window could make biomedical applications available. Our study may provide an insight into the relationship between plasmonic nanobubbles and the triggered microbubbles.
Collapse
|
11
|
Wang S, Yao J, Ou Z, Wang X, Long Y, Zhang J, Fang Z, Wang T, Ding T, Xu H. Plasmon-assisted nanophase engineering of titanium dioxide for improved performances in single-particle based sensing and photocatalysis. NANOSCALE 2022; 14:4705-4711. [PMID: 35265953 DOI: 10.1039/d1nr08247g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) due to its large bandgap, has a very limited efficiency in utilizing sunlight for photocatalysis and photoanode applications. Sensitizing with metallic nanoparticles is one of the promising routes for resolving this issue but it requires thermal annealing and proper bandgap engineering to optimize the Schottky junctions. Here we use plasmonic nanoheating to locally anneal the TiO2 medium with a sub-nanometer (sub-nm) feature, which results in a nanophase transition from amorphous TiO2 to anatase and rutile with a gradient configuration. Such gradient nanocoatings of rutile/anatase establish a cascade hot electron transfer via a conduction band and defect states, which improves the surface enhanced Raman scattering (SERS) performance and photocatalytic efficiency over an order of magnitude. Unlike conventional global annealing, this nanoannealing strategy with plasmonic heating enables sub-nm control at the interface between the metal and semiconductors, and this strategy not only provides new opportunities for single particle SERS, but also shows significant implications for photocatalysis and hot-electron chemistry.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jiacheng Yao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zhenwei Ou
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Xujie Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yinfeng Long
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Ti Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hongxing Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Bongiovanni G, Olshin PK, Yan C, Voss JM, Drabbels M, Lorenz UJ. The fragmentation mechanism of gold nanoparticles in water under femtosecond laser irradiation. NANOSCALE ADVANCES 2021; 3:5277-5283. [PMID: 34589666 PMCID: PMC8439145 DOI: 10.1039/d1na00406a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/31/2021] [Indexed: 05/14/2023]
Abstract
Plasmonic nanoparticles in aqueous solution have long been known to fragment under irradiation with intense ultrafast laser pulses, creating progeny particles with diameters of a few nanometers. However, the mechanism of this process is still intensely debated, despite numerous experimental and theoretical studies. Here, we use in situ electron microscopy to directly observe the femtosecond laser-induced fragmentation of gold nanoparticles in water, revealing that the process occurs through ejection of individual progeny particles. Our observations suggest that the fragmentation mechanism involves Coulomb fission, which occurs as the femtosecond laser pulses ionize and melt the gold nanoparticle, causing it to eject a highly charged progeny droplet. Subsequent Coulomb fission events, accompanied by solution-mediated etching and growth processes, create complex fragmentation patterns that rapidly fluctuate under prolonged irradiation. Our study highlights the complexity of the interaction of plasmonic nanoparticles with ultrafast laser pulses and underlines the need for in situ observations to unravel the mechanisms of related phenomena.
Collapse
Affiliation(s)
- Gabriele Bongiovanni
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Pavel K Olshin
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Chengcheng Yan
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Jonathan M Voss
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Ulrich J Lorenz
- Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
13
|
Zhou S, Wang Z, Dong C, Bian J, Zhang W. Wavelength-dependent laser-induced dynamic nano-annealing of single plasmonic antennas. NANOSCALE 2021; 13:8991-8997. [PMID: 33973586 DOI: 10.1039/d0nr09078f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we studied the wavelength-dependent laser-induced dynamic annealing of single plasmonic nano-antennas using in situ white light spectroscopy. Unexpected back-and-forth motions of rapidly melted single nano-antennas were observed upon excitation with a 532 nm laser, while only gradual opening of nanogaps was found in the case of a 405 nm laser. Theoretical analyses indicate that the dramatic nano-annealing phenomenon was caused by a series of laser-induced multiphysical processes at the nanoscale. It not only leads to the local heating effect, but also induces complex behaviors such as self-accelerated melting, asymmetry-induced nano-photophoretic forces and optical forces. Our work demonstrates the complexity of light-matter interactions at the nanoscale, and provides new possibilities for shaping and manipulating plasmonic nanostructures.
Collapse
Affiliation(s)
- Shuang Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Zhong Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Chenyu Dong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Jie Bian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
14
|
Nakayama B, Nakabayashi T, Esashika K, Hiruta Y, Saiki T. Interference-based wide-range dynamic tuning of the plasmonic color of single gold nanoparticles. OPTICS EXPRESS 2021; 29:15001-15012. [PMID: 33985209 DOI: 10.1364/oe.422564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Dynamic tuning of nanoscale coloration by exploiting localized surface plasmon resonance of gold nanoparticles (AuNPs) combined with an interference coloration mechanism is demonstrated experimentally. When interference between the scattering field from AuNPs and the reflected field from the substrate is observed under back-scattering white-light microscopy, the AuNPs exhibit various colors depending on their distance to the substrate. When the numerical aperture of the microscope objective is optimized, much greater coverage of the color space than was achieved with previously reported plasmon-based approaches is attained. Also, color tunability is examined by exploiting the temperature-induced volume change of a temperature-responsive hydrogel with embedded AuNPs to dynamically modify the distance to the substrate.
Collapse
|
15
|
Kumari G, Kamarudheen R, Zoethout E, Baldi A. Photocatalytic Surface Restructuring in Individual Silver Nanoparticles. ACS Catal 2021; 11:3478-3486. [PMID: 33859867 PMCID: PMC8034772 DOI: 10.1021/acscatal.1c00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Indexed: 12/15/2022]
Abstract
![]()
Light absorption
and scattering by metal nanoparticles can drive
catalytic reactions at their surface via the generation of hot charge
carriers, elevated temperatures, and focused electromagnetic fields.
These photoinduced processes can substantially alter the shape, surface
structure, and oxidation state of surface atoms of the nanoparticles
and therefore significantly modify their catalytic properties. Information
on such local structural and chemical change in plasmonic nanoparticles
is however blurred in ensemble experiments, due to the typical large
heterogeneity in sample size and shape distributions. Here, we use
single-particle dark-field and Raman scattering spectroscopy to elucidate
the reshaping and surface restructuring of individual silver nanodisks
under plasmon excitation and during photocatalytic CO2 hydrogenation.
We show that silver nanoparticles reshape significantly in inert N2 atmosphere, due to photothermal effects. Furthermore, by
collecting the inelastic scattering during laser irradiation in a
reducing gas environment, we observe intermittent light emission from
silver clusters transiently formed at the nanoparticle surface. These
clusters are likely to modify the photocatalytic activity of silver
nanodisks and to enable detection of reaction products by enhancing
their Raman signal. Our results highlight the dynamic nature of the
catalytic surface of plasmonic silver nanoparticles and demonstrate
the power of single-particle spectroscopic techniques to unveil their
structure–activity relationship both in situ and in real time.
Collapse
Affiliation(s)
- Gayatri Kumari
- DIFFER—Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5600 MB Eindhoven, The Netherlands
| | - Rifat Kamarudheen
- DIFFER—Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5600 MB Eindhoven, The Netherlands
| | - Erwin Zoethout
- DIFFER—Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Andrea Baldi
- DIFFER—Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5600 MB Eindhoven, The Netherlands
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
17
|
Guan G, Win KY, Yao X, Yang W, Han M. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021; 10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Indexed: 12/11/2022]
Abstract
With the wide utilization of antibiotics, antibiotic-resistant bacteria have been often developed more frequently to cause potential global catastrophic consequences. Emerging photothermal ablation has been attracting extensive research interest for quick/effective eradication of pathogenic bacteria from contaminated surroundings and infected body. In this field, anisotropic gold nanostructures with tunable size/morphologies have been demonstrated to exhibit their outstanding photothermal performance through strong plasmonic absorption of near-infrared (NIR) light, efficient light to heat conversion, and easy surface modification for targeting bacteria. To this end, this review first introduces thermal treatment of infectious diseases followed by photothermal therapy via heat generation on NIR-absorbing gold nanostructures. Then, the usual synthesis and spectral features of diversified gold nanostructures and composites are systematically overviewed with the emphasis on the importance of size, shape, and composition to achieve strong plasmonic absorption in NIR region. Further, the innovated photothermal applications of gold nanostructures are comprehensively demonstrated to combat against bacterial infections, and some constructive suggestions are also discussed to improve photothermal technologies for practical applications.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Khin Yin Win
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiang Yao
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Ming‐Yong Han
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
18
|
Plasmon-Enhanced Photothermal and Optomechanical Deformations of a Gold Nanoparticle. NANOMATERIALS 2020; 10:nano10091881. [PMID: 32962265 PMCID: PMC7558075 DOI: 10.3390/nano10091881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022]
Abstract
Plasmon-enhanced photothermal and optomechanical effects on deforming and reshaping a gold nanoparticle (NP) are studied theoretically. A previous paper (Wang and Ding, ACS Nano 13, 32-37, 2019) has shown that a spherical gold nanoparticle (NP) irradiated by a tightly focused laser beam can be deformed into an elongated nanorod (NR) and even chopped in half (a dimer). The mechanism is supposed to be caused by photothermal heating for softening NP associated with optical traction for follow-up deformation. In this paper, our study focuses on deformation induced by Maxwell's stress provided by a linearly polarized Gaussian beam upon the surface of a thermal-softened NP/NR. We use an elastic model to numerically calculate deformation according to optical traction and a viscoelastic model to theoretically estimate the following creep (elongation) as temperature nears the melting point. Our results indicate that a stretching traction at the two ends of the NP/NR causes elongation and a pinching traction at the middle causes a dent. Hence, a bigger NP can be elongated and then cut into two pieces (a dimer) at the dent due to the optomechanical effect. As the continuous heating process induces premelting of NPs, a quasi-liquid layer is formed first and then an outer liquid layer is induced due to reduction of surface energy, which was predicted by previous works of molecular dynamics simulation. Subsequently, we use the Young-Laplace model to investigate the surface tension effect on the following deformation. This study may provide an insight into utilizing the photothermal effect associated with optomechanical manipulation to tailor gold nanostructures.
Collapse
|
19
|
Holub M, Adobes-Vidal M, Frutiger A, Gschwend PM, Pratsinis SE, Momotenko D. Single-Nanoparticle Thermometry with a Nanopipette. ACS NANO 2020; 14:7358-7369. [PMID: 32426962 DOI: 10.1021/acsnano.0c02798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 μs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.
Collapse
Affiliation(s)
- Martin Holub
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maria Adobes-Vidal
- Wood Materials Science Group, Institute for Building Materials, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Pascal M Gschwend
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
20
|
Xu T, Wu S, Jiang Z, Wu X, Zhang Q. Video microscopy-based accurate optical force measurement by exploring a frequency-changing sinusoidal stimulus. APPLIED OPTICS 2020; 59:2452-2456. [PMID: 32225781 DOI: 10.1364/ao.387295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Optical tweezers are constantly evolving micromanipulation tools that can provide piconewton force measurement accuracy and greatly promote the development of bioscience at the single-molecule scale. Consequently, there is an urgent need to characterize the force field generated by optical tweezers in an accurate, cost-effective, and rapid manner. Thus, in this study, we conducted a deep survey of optically trapped particle dynamics and found that merely quantifying the response amplitude and phase delay of particle displacement under a sine input stimulus can yield sufficiently accurate force measurements. In addition, Nyquist-Shannon sampling theorem suggests that the entire recovery of the accessible particle sinusoidal response is possible, provided that the sampling theorem is satisfied, thereby eliminating the requirement for high-bandwidth (typically greater than 10 kHz) detectors. Based on this principle, we designed optical trapping experiments by loading a sinusoidal signal into the optical tweezers system and recording the trapped particle responses with 45 frames per second (fps) charge-coupled device (CCD) and 163 fps complementary metal-oxide-semiconductor (CMOS) cameras for video microscopy imaging. The experimental results demonstrate that the use of low-bandwidth detectors is suitable for highly accurate force quantification, thereby greatly reducing the complexity of constructing optical tweezers. The trap stiffness increases significantly as the frequency increases, and the experimental results demonstrate that the trapped particles shifting along the optical axis boost the transversal optical force.
Collapse
|
21
|
Richard-Lacroix M, Deckert V. Direct molecular-level near-field plasmon and temperature assessment in a single plasmonic hotspot. LIGHT, SCIENCE & APPLICATIONS 2020; 9:35. [PMID: 32194949 PMCID: PMC7061098 DOI: 10.1038/s41377-020-0260-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 05/06/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is currently widely recognized as an essential but still emergent technique for exploring the nanoscale. However, our lack of comprehension of crucial parameters still limits its potential as a user-friendly analytical tool. The tip's surface plasmon resonance, heating due to near-field temperature rise, and spatial resolution are undoubtedly three challenging experimental parameters to unravel. However, they are also the most fundamentally relevant parameters to explore, because they ultimately influence the state of the investigated molecule and consequently the probed signal. Here we propose a straightforward and purely experimental method to access quantitative information of the plasmon resonance and near-field temperature experienced exclusively by the molecules directly contributing to the TERS signal. The detailed near-field optical response, both at the molecular level and as a function of time, is evaluated using standard TERS experimental equipment by simultaneously probing the Stokes and anti-Stokes spectral intensities. Self-assembled 16-mercaptohexadodecanoic acid monolayers covalently bond to an ultra-flat gold surface were used as a demonstrator. Observation of blinking lines in the spectra also provides crucial information on the lateral resolution and indication of atomic-scale thermally induced morphological changes of the tip during the experiment. This study provides access to unprecedented molecular-level information on physical parameters that crucially affect experiments under TERS conditions. The study thereby improves the usability of TERS in day-to-day operation. The obtained information is of central importance for any experimental plasmonic investigation and for the application of TERS in the field of nanoscale thermometry.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| |
Collapse
|
22
|
Chow TH, Li N, Bai X, Zhuo X, Shao L, Wang J. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Acc Chem Res 2019; 52:2136-2146. [PMID: 31368690 DOI: 10.1021/acs.accounts.9b00230] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gold nanobipyramids (Au NBPs) and gold nanorods (Au NRs) are two types of elongated plasmonic nanoparticles with their longitudinal dipolar plasmon wavelengths synthetically tunable from the visible region to the near-infrared region. Both have highly polarization-dependent absorption and scattering cross sections because of their anisotropic geometries. In terms of their differences, each Au NBP has five equally angularly separated twinning planes that are aligned parallel to the length direction, while the most common Au NRs are single-crystalline. As a result, Au NBPs possess two sharp end tips, while Au NRs have rounded or flat ends, resulting in very different plasmonic properties. In general, Au NBPs exhibit larger local electric field enhancements, larger optical cross sections, narrower line widths, better shape and size uniformity, and higher refractive index sensitivity than Au NRs. With the recent development of reliable methods for the growth of Au NBPs with high purity and uniformity, Au NBPs have been attracting much interest for the investigation of their intriguing plasmonic properties and applications. In this Account, we provide a concise introduction to Au NBPs, including their fascinating plasmonic properties, wet-chemistry growth methods, plasmonic applications, and structure-directing function. The synthesis of uniform Au NBPs with variable sizes is of vital importance to control their plasmonic properties. In the synthesis part, we summarize the recent developments on the synthesis of Au NBPs, with a focus on the role of seeds in the seed-mediated growth of pentatwinned Au NBPs and methods to improve their number purity. The excellent plasmonic properties of Au NBPs make them promising candidates for numerous applications. To further explore the largely improved functionalities of Au NBPs, different types of Au-NBP-based hybrid nanostructures have been prepared. They exhibit synergistic interactions between Au NBPs and the other components. We highlight the widespread plasmonic applications of Au NBPs and Au-NBP-based hybrid nanostructures in the fields of spectroscopy, photocatalysis, sensing, switching, and biomedical technologies. We next turn to the structure-directing function of Au NBPs to demonstrate the Au-NBP-directed growth of metal nanostructures and their applications. The structure-directing function is enabled by the unique pentatwinned crystalline structure of Au NBPs. Finally, we conclude with remarks on the future perspectives and research directions on Au NBPs as well as the remaining challenges. We hope that this Account will act as a platform to offer fascinating opportunities and stimulate fast-growing research on the various aspects of Au NBPs.
Collapse
Affiliation(s)
- Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nannan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
23
|
Wang S, Ding T. Optical-force-directed single-particle-based track etching in polystyrene films. NANOTECHNOLOGY 2019; 30:305304. [PMID: 31051006 DOI: 10.1088/1361-6528/ab10e6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The establishment of optical trapping theory by A Ashkin almost half a century ago led to the trapping and manipulation of micro-/nano-objects and atoms by laser beams, which is now applied in many fields. However, in a complex system where multi-physical effects interact synergistically, light-matter interaction becomes dynamic and complicated and is still poorly understood. Here, by utilising plasmonic heating, nanolithography of polystyrene (PS) films and nanomanipulation of gold nanoparticles are realised. We find that laser power and PS film thickness as well as particle shape strongly affect the etching behaviour of the PS films, which is a synergistic effect of photothermal ablation and optical forces. Theoretical calculations and simulations rationalise the proposed mechanism, which is also verified by experimental observation. This understanding not only sheds light on how the synergistic effect of photo-ablation and optical forces acts on the particles and polymer films, but also provides a guideline for light-directed single-particle-based nanolithography and nanomanipulation.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | | |
Collapse
|
24
|
Ye Z, Wei L, Xiao L, Wang J. Laser illumination-induced dramatic catalytic activity change on Au nanospheres. Chem Sci 2019; 10:5793-5800. [PMID: 31293767 PMCID: PMC6568046 DOI: 10.1039/c9sc01666j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding morphology dependent catalytic kinetics from a single nanoparticle plays a significant role in the development of robust nano-catalysts with high efficiency. Unfortunately, detailed knowledge of the morphology dependent catalytic properties of single nanoparticles after shape transitions is lacking. In this work, the distinct catalytic properties of a single gold nanoparticle (GNP) after symmetry breaking were disclosed at the single-particle level for the first time. The morphology of the spherical GNP was elongated into a rod shape (i.e., gold nanorod, GNR) with a tightly focused Gaussian laser beam based on the photothermal effect. By using the fluorogenic oxidation reaction (i.e., amplex red to resorufin) as a model reaction, noticeable variation in catalytic efficiency after the shape modulation process was found at the single-particle level. The GNP displays noticeably higher catalytic efficiency which might be ascribed to the heterogeneous lattice structure on the particle surface as confirmed by transmission electron microscopy (TEM) characterization. Rearrangement of surface atoms after shape modulation normally generates a more ordered crystal structure, resulting in a lower surface energy for catalytic reaction. However, both of these nanoparticles still exhibit dynamic activity fluctuation in a temporal dependent route, indicating a distinct spontaneous dynamic surface restructuring process. These kinetic evidences might facilitate the development nanoparticle-based heterogeneous catalysts, particularly based on the morphology effect.
Collapse
Affiliation(s)
- Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin , 300071 , China . ; http://www.xiaolhlab.cn
| | - Lin Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research , Key Laboratory of Phytochemical R&D of Hunan Province , College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , 410082 , China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin , 300071 , China . ; http://www.xiaolhlab.cn
| | - Jianfang Wang
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| |
Collapse
|
25
|
Abstract
The great barrier of optical diffraction significantly limits the resolution of photolithography and the manipulation of nano-objects by light. Here, through utilizing near-field enhancement and photothermal effects, we demonstrate the nanolithography of polystyrene (PS) films and self-jetting of gold nanoparticles (Au NPs), which happen simultaneously. This nanojet lithography creates subwavelength holes via the single step of laser irradiation. We find that the laser power input strongly affects the etching of PS films, as well as the movement of Au NPs, which is a synergic effect of photoablation (including both photothermal and photochemical aspects) and gas pushing. This facile approach not only generates polymer holes with sizes below the diffraction limit, but also provides an intriguing way to detach and move particles on surfaces via thermal jetting.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | | |
Collapse
|