1
|
Phan H, Herng TS, Xudong H, Nguyen LK, La VT, Huynh CD, Ding J, Wu J. A high-spin s-triazine linked fluorenyl radical polymer. RSC Adv 2024; 14:16945-16950. [PMID: 38799211 PMCID: PMC11123602 DOI: 10.1039/d4ra03034f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The syntheses of high-spin organic polymers have been a daunting task due to the highly reactive nature of organic radicals, especially when they are ferromagnetically coupled. In this paper, we report our approach to obtain high-spin organic polymers, in which a reasonably stable fluorenyl radical was employed as the primary radical unit, and s-triazine serves as the connector that facilitates ferromagnetic coupling between them. Initially, the diamagnetic polymer precursor was synthesized by cyclotrimerization of a cyano-monomer. Subsequently, the high-spin polymers were obtained by oxidizing corresponding anionic polymers using O2 (6) or I2 (7). The temperature-dependent magnetic moments, and field-dependent magnetization data obtained from SQUID measurements revealed ferromagnetic couplings between primary radical units, with coupling J = 7.5 cm-1 and 38.6 cm-1. The percentages of primary unit in the radical form are 29%, and 47% for 6 and 7, respectively. Notably, this marks the first reported instance of a high-spin fluorenyl radical polymer exhibiting ferromagnetic coupling.
Collapse
Affiliation(s)
- Hoa Phan
- School of Chemistry and Life Science, Hanoi University of Science and Technology Hanoi Vietnam
| | - Tun Seng Herng
- Department of Materials Science and Engineering, National University of Singapore 119260 Singapore Singapore
| | - Hou Xudong
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Linh Khanh Nguyen
- School of Chemistry and Life Science, Hanoi University of Science and Technology Hanoi Vietnam
| | - Vinh The La
- School of Chemistry and Life Science, Hanoi University of Science and Technology Hanoi Vietnam
| | - Chinh Dang Huynh
- School of Chemistry and Life Science, Hanoi University of Science and Technology Hanoi Vietnam
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore 119260 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
2
|
Gu Q, Lu X, Chen C, Hu R, Wang X, Sun G, Kang F, Yang J, Wang X, Wu J, Li YY, Peng YK, Qin W, Han Y, Liu X, Zhang Q. Thermally Induced Persistent Covalent-Organic Frameworks Radicals. ACS NANO 2023. [PMID: 38014811 DOI: 10.1021/acsnano.3c08313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Persistent covalent-organic framework (COF) radicals hold important applications in magnetics and spintronics; however, their facile synthesis remains a daunting challenge. Here, three p-phenylenediacetonitrile-based COFs (named CityU-4, CityU-5, and CityU-6) were synthesized. Upon heat treatment (250 °C for CityU-4 and CityU-5 or 220 °C for CityU-6), these frameworks were brought into their persistent radical forms (no obvious changes after at least one year), together with several observable factors, including color changes, red-shifted absorption, the appearance of electron spin resonance (ESR) signals, and detectable magnetic susceptibility. The theoretical simulation suggests that after heat treatment, lower total energy and nonzero spin density are two main factors to guarantee persistent COFs radicals and polarized spin distributions. This work provides an efficient method for the preparation of persistent COF radicals with promising potentials.
Collapse
Affiliation(s)
- Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Ab-dullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Renjie Hu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Guohan Sun
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Jinghang Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yang Yang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Ab-dullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiaogang Liu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
3
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Liu X, Bi RX, Yu FT, Zhang CR, Luo QX, Liang RP, Qiu JD. D-π-A array structure of Bi 4Ti 3O 12-triazine-aldehyde group benzene skeleton for enhanced photocatalytic uranium (VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131189. [PMID: 36933503 DOI: 10.1016/j.jhazmat.2023.131189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic reduction of UVI to UIV can help remove U from the environment and thus reduce the harmful impacts of radiation emitted by uranium isotopes. Herein, we first synthesized Bi4Ti3O12 (B1) particles, then B1 was crosslinked with 6-chloro-1,3,5-triazine-diamine (DCT) to afford B2. Finally, B3 was formed using B2 and 4-formylbenzaldehyde (BA-CHO) to investigate the utility of the D-π-A array structure for photocatalytic UVI removal from rare earth tailings wastewater. B1 lacked adsorption sites and displayed a wide band gap. The grafted triazine moiety in B2 introduced active sites and narrowed the band gap. Notably, B3, a Bi4Ti3O12 (donor)-triazine unit (π-electron bridge)-aldehyde benzene (acceptor) molecule, effectively formed the D-π-A array structure, which formed multiple polarization fields and further narrowed the band gap. Therefore, UVI was more likely to capture electrons at the adsorption site of B3 and be reduced to UIV due to energy level matching effects. UVI removal capacity of B3 under simulated sunlight was 684.9 mg g-1, 2.5 times greater than B1 and 1.8 times greater than B2. B3 was still active after multiple reaction cycles, and UVI removal from tailings wastewater reached 90.8%. Overall, B3 provides an alternative design scheme for enhancing photocatalytic performance.
Collapse
Affiliation(s)
- Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Rui-Xiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Feng-Tao Yu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China
| | - Cheng-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China.
| |
Collapse
|
5
|
Alcón I, Ribas-Ariño J, Moreira IDPR, Bromley ST. Emergent Spin Frustration in Neutral Mixed-Valence 2D Conjugated Polymers: A Potential Quantum Materials Platform. J Am Chem Soc 2023; 145:5674-5683. [PMID: 36877195 PMCID: PMC10021012 DOI: 10.1021/jacs.2c11185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs)─organic 2D materials composed of arrays of carbon sp2 centers connected by π-conjugated linkers─are attracting increasing attention due to their potential applications in device technologies. This interest stems from the ability of 2DCPs to host a range of correlated electronic and magnetic states (e.g., Mott insulators). Substitution of all carbon sp2 centers in 2DCPs by nitrogen or boron results in diamagnetic insulating states. Partial substitution of C sp2 centers by B or N atoms has not yet been considered for extended 2DCPs but has been extensively studied in the analogous neutral mixed-valence molecular systems. Here, we employ accurate first-principles calculations to predict the electronic and magnetic properties of a new class of hexagonally connected neutral mixed-valence 2DCPs in which every other C sp2 nodal center is substituted by either a N or B atom. We show that these neutral mixed-valence 2DCPs significantly energetically favor a state with emergent superexchange-mediated antiferromagnetic (AFM) interactions between C-based spin-1/2 centers on a triangular sublattice. These AFM interactions are surprisingly strong and comparable to those in the parent compounds of cuprate superconductors. The rigid and covalently linked symmetric triangular AFM lattice in these materials thus provides a highly promising and robust basis for 2D spin frustration. As such, extended mixed-valence 2DCPs are a highly attractive platform for the future bottom-up realization of a new class of all-organic quantum materials, which could host exotic correlated electronic states (e.g., unusual magnetic ordering, quantum spin liquids).
Collapse
Affiliation(s)
- Isaac Alcón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Ribas-Ariño
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Chen L, Rudolf T, Blinder R, Suryadevara N, Dalmeida A, Welscher PJ, Lamla M, Arnold M, Herr U, Jelezko F, Ruben M, Kuehne AJC. Red-Fluorescing Paramagnetic Conjugated Polymer Nanoparticles─Triphenyl Methyl Radicals as Monomers in C–C Cross-Coupling Dispersion Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Lisa Chen
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tamara Rudolf
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rémi Blinder
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nithin Suryadevara
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ashley Dalmeida
- Institute for Functional Nanosystems, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Philipp J. Welscher
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Lamla
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Mona Arnold
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ulrich Herr
- Institute for Functional Nanosystems, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d’Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg, France
| | - Alexander J. C. Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
7
|
Wang Y, Yang X, Li P, Cui F, Wang R, Li X. Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries. Macromol Rapid Commun 2022:e2200760. [PMID: 36385727 DOI: 10.1002/marc.202200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as one of the promising energy storage systems. However, rapid capacity attenuation caused by shuttle effect of soluble polysulfides is major challenge in practical application. The separator modification is regarded as one countermeasure besides the construction of sulfur host materials. Covalent organic frameworks (COFs) are one type of outstanding candidates for suppressing shuttle effect of polysulfides. Herein, recent advances of COFs in the application as commercial separator modifiers are summarized. COFs serve as ionic sieves, the importance of porous size and surface environments in inhibiting soluble polysulfides shuttling and promoting lithium ions conduction is highlighted. The superiority of charge-neutral COFs, ionic COFs, and the composites of COFs with conductive materials for improving reversible capacity and cycling stability is demonstrated. Some new strategies for the design of COF-based separator modifiers are proposed to achieving high energy density. The review provides new perspectives for future development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Yaxin Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xuemiao Yang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Pengyue Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Fangling Cui
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaoju Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| |
Collapse
|
8
|
Wang C, Zhang Z, Zhu Y, Yang C, Wu J, Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102290. [PMID: 35052010 DOI: 10.1002/adma.202102290] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs), an emerging class of organic crystalline polymers with highly oriented structures and permanent porosity, can adopt 2D or 3D architectures depending on the different topological diagrams of the monomers. Notably, 2D COFs have particularly gained much attention due to the extraordinary merits of their extended in-plane π-conjugation and topologically ordered columnar π-arrays. These properties together with high crystallinity, large surface area, and tunable porosity distinguish 2D COFs as an ideal candidate for the fabrication of functional materials. Herein, this review surveys the recent research advances in 2D COFs with special emphasis on the preparation of 2D COF powders, single crystals, and thin films, as well as their advanced optical, electrical, and magnetic functionalities. Some challenging issues and potential research outlook for 2D COFs are also provided for promoting their development in terms of structure, synthesis, and functionalities.
Collapse
Affiliation(s)
- Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yating Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
9
|
Li WZ, Chen H, Shen MN, Yang Z, Fan Z, Xiao J, Chen J, Zhang H, Wang Z, Wang XQ. Chaotropic Effect Stabilized Radical-Containing Supramolecular Organic Frameworks for Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108055. [PMID: 35253981 DOI: 10.1002/smll.202108055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Radical-containing frameworks (RCFs) have emerged as promising functional materials in various fields due to the combination of the highly ordered frame structure and the fascinating property of organic radicals. Here, the first example of radical-containing supramolecular organic frameworks (SOFs) fabricated by the chaotropic effect between closo-dodecaborate cluster (B12 H122- ) and 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT3+ ) is presented. The SOFs can be easily synthesized by stirring the B12 H122- and the TPT3+ in aqueous solution through self-assembly. Upon 435 nm light irradiation, the SOFs exhibits photochromic behavior from slight yellow (SOF-1) to dark purple (SOF-2). Electron paramagnetic resonance spectroscopy also reveals that stable radicals are generated in situ after light irradiation. Powder X-ray diffraction demonstrates the SOFs maintain their structural stabilities upon light irradiation. More interestingly, the radical-containing SOFs exhibit efficient photothermal effect under 660 nm light irradiation, which can be applied as photothermal agent for antibacterial application both in vitro and in vivo. This work highlights the construction of RCFs through supramolecular self-assembly, which may arouse applications in energy, catalysis, photoluminescence, and biomedical fields.
Collapse
Affiliation(s)
- Wen-Zhen Li
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Hao Chen
- National Demonstration Center for Experimental Chemistry, Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Meng-Na Shen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Ziqiong Yang
- National Demonstration Center for Experimental Chemistry, Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhengyu Fan
- National Demonstration Center for Experimental Chemistry, Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ju Xiao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Junling Chen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry, Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhengxi Wang
- Non-power Nuclear Technology Collaborative Innovation Center, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, Hubei, 437100, P. R. China
| | - Xiao-Qiang Wang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
10
|
Alves Fávaro M, Ditz D, Yang J, Bergwinkl S, Ghosh AC, Stammler M, Lorentz C, Roeser J, Quadrelli EA, Thomas A, Palkovits R, Canivet J, Wisser FM. Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14182-14192. [PMID: 35293203 DOI: 10.1021/acsami.1c24713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent triazine frameworks (CTFs) are a class of porous organic polymers that continuously attract growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic framework structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows us to tailor the physicochemical features of the CTF materials, including the nitrogen content, the apparent specific surface area, and optoelectronic properties. Based on a comprehensive analytical investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as the specific surface area, band gap, charge separation, and surface wettability with water. The entirety of these parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the optimal balance between optoelectronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol/(h·g) under visible light irradiation and in the presence of a platinum cocatalyst.
Collapse
Affiliation(s)
- Marcelo Alves Fávaro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Daniel Ditz
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jin Yang
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ashta C Ghosh
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Michael Stammler
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Chantal Lorentz
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Jérôme Roeser
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Elsje Alessandra Quadrelli
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Arne Thomas
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jérôme Canivet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Florian M Wisser
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Presence and absence of intrinsic magnetism in graphitic carbon nitrides designed through C-N-H building blocks. Sci Rep 2022; 12:2343. [PMID: 35149743 PMCID: PMC8837644 DOI: 10.1038/s41598-022-05590-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
We use the first principle calculation to investigate the intrinsic magnetism of graphitic carbon nitrides (GCNs). By preserving three-fold symmetry, the GCN building blocks have been built out of different combinations between 6 components which are C atom, N atom, s-triazine, heptazine, heptazine with C atom at the center, and benzimidazole-like component. That results in 20 phases where 11 phases have been previously reported, and 9 phases are newly derived. The partial density of states and charge density have been analyzed through 20 phases to understand the origin of the presence and absence of intrinsic magnetism in GCNs. The intrinsic magnetism will be present not only because the GCNs comprising of radical components but also the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π-conjugated states are not the valence maximum to break the delocalization of unpaired electrons. The building blocks are also employed to study alloys between g-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {C}_3\hbox {N}_4$$\end{document}C3N4 and g-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {C}_4\hbox {N}_3$$\end{document}C4N3. The magnetization of the alloys has been found to be linearly dependent on a number of C atoms in the unit cell and some magnetic alloys are energetically favorable. Moreover, the intrinsic magnetism in GCNs can be promoted or demoted by passivating with a H atom depending on the passivated positions.
Collapse
|
12
|
Liu Z, Zhang Z, Li T, Zhao W. Three-Dimensional Diradical Metallacage with an Open-Shell Ground State. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhaoyue Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhonghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
13
|
Yang L, Gong R, Waterhouse GIN, Dong J, Xu J. A novel covalent triazine framework developed for efficient determination of 1-naphthol in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31185-31194. [PMID: 33598837 DOI: 10.1007/s11356-021-12869-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Covalent triazine frameworks (CTFs) are an exciting new class of porous organic materials with excellent chemical stability and easy functionalization. In recent years, CTFs have gained increasing attention in electrochemical detection of environmental contaminants. Herein, a novel CTF material was successfully synthesized by the solvothermal condensation of 1,3,5-tris-(4-aminophenyl)triazine (TAPT) and 2,3,6,7-tetrabromonapthalene dianhydride (TBNDA) for determination of 1-naphthol in water. The obtained CTF, denoted here as TATB, comprised uniformly sized spherical particles (diameter 0.5-2 μm) with a highly conjugated structure that benefited electron transfer processes when applied to a glassy carbon electrode (GCE). A TATB/GCE working electrode showed excellent catalytic activity for the oxidation of 1-naphthol, with the oxidation peak current being directly proportional to the 1-naphthol concentration in the range of 0.01-10.0 μM, with a detection limit of 5.0 nM (S/N = 3). In addition, the TATB/GCE sensor possesses excellent reproducibility, sensitivity, and selectivity for 1-naphthol determination in aqueous solution. This work highlights the potential of CTFs in electrochemical sensing, whilst also demonstrating a sensitive and stable sensor platform for 1-naphthol detection in water.
Collapse
Affiliation(s)
- Liuliu Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Ruizhi Gong
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jing Dong
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
14
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self‐Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lu Tong
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
15
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self-Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021; 60:9852-9858. [PMID: 33651476 DOI: 10.1002/anie.202100655] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Indexed: 12/24/2022]
Abstract
Condensation of an inherently C3 -symmetric polychlorotriphenylmethyl (PTM) radical trisaldehyde with tris(2-aminoethyl)amine (TREN) yields a [4+4] tetrahedral radical cage as a racemic pair of homochiral enantiomers in 75 % isolated yield. The structure was characterized by X-ray crystallography, confirming the homochirality of each cage framework. The homochirality results from intramolecular [CH⋅⋅⋅π] and hydrogen-bonding interactions within the cage framework. The four PTM radicals in a cage undergo weak through-space coupling. Magnetic measurements demonstrated that each cage bears 3.58 spins.
Collapse
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
16
|
Alcón I, Santiago R, Ribas-Arino J, Deumal M, Moreira IDPR, Bromley ST. Controlling pairing of π-conjugated electrons in 2D covalent organic radical frameworks via in-plane strain. Nat Commun 2021; 12:1705. [PMID: 33731706 PMCID: PMC7969611 DOI: 10.1038/s41467-021-21885-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/17/2021] [Indexed: 11/14/2022] Open
Abstract
Controlling the electronic states of molecules is a fundamental challenge for future sub-nanoscale device technologies. π-conjugated bi-radicals are very attractive systems in this respect as they possess two energetically close, but optically and magnetically distinct, electronic states: the open-shell antiferromagnetic/paramagnetic and the closed-shell quinoidal diamagnetic states. While it has been shown that it is possible to statically induce one electronic ground state or the other by chemical design, the external dynamical control of these states in a rapid and reproducible manner still awaits experimental realization. Here, via quantum chemical calculations, we demonstrate that in-plane uniaxial strain of 2D covalently linked arrays of radical units leads to smooth and reversible conformational changes at the molecular scale that, in turn, induce robust transitions between the two kinds of electronic distributions. Our results pave a general route towards the external control, and thus technological exploitation, of molecular-scale electronic states in organic 2D materials. Controlling the electronic states of molecules is a fundamental challenge for future sub-nanoscale device technologies but the external dynamical control of these states still awaits experimental realization. Here, via quantum chemical calculations, the authors demonstrate that in-plane uniaxial strain of 2D covalently linked arrays of radical units induces controlled pairing of π-conjugated electrons in a reversible way.
Collapse
Affiliation(s)
- Isaac Alcón
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany.
| | - Raúl Santiago
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Ribas-Arino
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Mercè Deumal
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
17
|
|
18
|
Yadav D, Dixit AK, Raghothama S, Awasthi SK. Ni nanoparticle-confined covalent organic polymer directed diaryl-selenides synthesis. Dalton Trans 2020; 49:12266-12272. [PMID: 32839789 DOI: 10.1039/d0dt01327g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present work describes the preparation of a new covalent organic polymer (COP) and its application as a hetero support for diaryl selenides synthesis. A nitrogen rich COP (CGP) has been synthesized via SNAr reaction of cyanuric chloride with guanidinium hydrochloride. The successful confinement of COP with Ni nanoparticles through post-synthetic transformations (Ni@CGP) provides excellent catalytic activity for the transformation of aryl halides into diaryl selenides using elemental selenium powder. The synthetic transformations are well confirmed using various modern analytical and spectroscopic techniques which reveal high chemical and thermal durability. The N-rich framework of CGP fortifies the confinement of Ni NPs. Ni@CGP provides an efficient approach for diaryl selenides synthesis using a very cheap selenating reagent under water benign solvent conditions (DMSO : H2O) at room temperature with high reusability. Significantly, our work not only contributes the opportunity for developing economical and effective non-noble metal decorated COPs as heterogeneous catalysts, but also delivers an efficient approach to produce industrially important C-Se coupling products.
Collapse
Affiliation(s)
- Deepika Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | | | | | |
Collapse
|
19
|
Allendorf MD, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Electronic Devices Using Open Framework Materials. Chem Rev 2020; 120:8581-8640. [DOI: 10.1021/acs.chemrev.0c00033] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
20
|
Souto M, Strutyński K, Melle‐Franco M, Rocha J. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry 2020; 26:10912-10935. [DOI: 10.1002/chem.202001211] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Souto
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
21
|
Sun R, Hou S, Luo C, Ji X, Wang L, Mai L, Wang C. A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage. NANO LETTERS 2020; 20:3880-3888. [PMID: 32319781 DOI: 10.1021/acs.nanolett.0c01040] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.
Collapse
Affiliation(s)
- Ruimin Sun
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Singyuk Hou
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | - Xiao Ji
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Luning Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Zhang J, Zheng T, Zhang J. I2
/K2
S2
O8
Mediated Direct Oxidative Annulation of Alkylazaarenes with Amidines for the Synthesis of Substituted 1,3,5-Triazines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Tingting Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Jidong Zhang
- School of Chemistry & Chemical Engineering; Ankang University; 725000 Ankang Shaanxi P. R. China
| |
Collapse
|
23
|
Tang S, Ruan H, Feng R, Zhao Y, Tan G, Zhang L, Wang X. Tunable Reduction of 2,4,6‐Tri(4‐pyridyl)‐1,3,5‐Triazine: From Radical Anion to Diradical Dianion to Radical Metal–Organic Framework. Angew Chem Int Ed Engl 2019; 58:18224-18229. [DOI: 10.1002/anie.201910468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Shuxuan Tang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- Center of Materials Science and EngineeringGuangxi University of Science and Technology Liuzhou 545006 China
| | - Xinping Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|
24
|
Tang S, Ruan H, Feng R, Zhao Y, Tan G, Zhang L, Wang X. Tunable Reduction of 2,4,6‐Tri(4‐pyridyl)‐1,3,5‐Triazine: From Radical Anion to Diradical Dianion to Radical Metal–Organic Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuxuan Tang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- Center of Materials Science and EngineeringGuangxi University of Science and Technology Liuzhou 545006 China
| | - Xinping Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|