1
|
Wang C, Zhong W, Sun X, Guo J, Chen Y, Zhao Y, Han J, Zhao Y. NIR-Activable Charge Transfer Agents for Synergistic Photoimmunotherapy. Angew Chem Int Ed Engl 2025; 64:e202416828. [PMID: 39319629 DOI: 10.1002/anie.202416828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has become an attractive tumor treatment modality, yet the facile design of photoimmunotheranostic agents with efficient near infrared (NIR) light-absorbing and immune-activating capabilities remains a tremendous challenge. Herein, we developed a NIR-activable organic charge transfer complex (CTC), with perylene (PER) as the electron donor and 4,5,9,10-tetrabromoisochromeno [6,5,4-def]isochromene-1,3,6,8-tetraone (Br4NDI) as the electron acceptor. Through further supramolecular assembly, the PER-Br4NDI nanoparticle (PBND NP) for spatiotemporally controlled photoimmunotherapy was constructed. The PBND NP exhibits superb NIR absorption, robust intermolecular charge transfer, and enhanced intersystem crossing. Upon NIR photoirradiation, the PBND NP effectively exerts photothermal and photodynamic effects with a remarkable photothermal conversion efficiency of 63.5 % and a high reactive oxygen species generation capability, which not only directly ablates primary tumors, but also dramatically suppresses distant tumor growth via promoted immunogenic cell death. Moreover, programmed cell death protein 1 antibody acts synergistically to block immune evasion and ultimately enhances cancer treatment efficacy. This work therefore sheds light on the design of organic CTCs for synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Ma R, Zhang P, Chen X, Zhang M, Han Q, Yuan Q. Dual-responsive nanoplatform for integrated cancer diagnosis and therapy: Unleashing the power of tumor microenvironment. Front Chem 2024; 12:1475131. [PMID: 39391835 PMCID: PMC11464441 DOI: 10.3389/fchem.2024.1475131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Chemodynamic therapy (CDT), designed to trigger a tumor-specific hydrogen peroxide (H2O2) reaction generating highly toxic hydroxyl radicals (·OH), has been investigated for cancer treatment. Unfortunately, the limited Fenton or Fenton-like reaction rate and the significant impact of excessive reducing glutathione (GSH) in the tumor microenvironment (TME) have severely compromised the effectiveness of CDT. To address this issue, we designed a dual-responsive nanoplatform utilizing a metal-polyphenol network (MPN) -coated multi-caged IrOx for efficient anti-tumor therapy in response to the acidic TME and intracellular excess of GSH, in which MPN composed of Fe3+ and tannic acid (TA). Initially, the acidic TME and intracellular excess of GSH lead to the degradation of the MPN shell, resulting in the release of Fe3+ and exposure of the IrOx core, facilitating the efficient dual-pathway CDT. Subsequently, the nanoplatform can mitigate the attenuation of CDT by consuming the excessive GSH within the tumor. Finally, the multi-caged structure of IrOx is advantageous for effectively implementing photothermal therapy (PTT) in coordination with CDT, further enhancing the therapeutic efficacy of tumors. Moreover, the outstanding Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) (T1/T2) multimodal imaging capabilities of IrOx@MPN enable early diagnosis and timely treatment. This work provides a typical example of the construction of a novel multifunctional platform for dual-responsive treatment of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Qinghe Han
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Li J, Gao M, Wang Y, Wang W, Meng S, Zhang X, Zhang C, Liu P, Zhang X, Zheng Z, Zhang R. NIR-II Absorption/Emission Dual Function Based 2D Targeted Nanotheranostics for Tunable Hydrogenothermal Therapy. Adv Healthc Mater 2024; 13:e2401060. [PMID: 38815213 DOI: 10.1002/adhm.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for treating tumors that offers multiple advantages. Nevertheless, its practical use in clinical settings faces several limitations, such as suboptimal delivery efficiency, uneven heat distribution, and challenges in predicting optimal treatment duration. In addition, the localized hyperthermia generated by the PTT method to induce cell apoptosis can result in the production of excessive reactive oxygen species (ROS) and the release of inflammatory cytokines, which can pose a threat to the healthy tissues surrounding the tumor. To address the above challenges, this work designs an integrated H2 delivery nanoplatform for multimodal imaging H2 thermal therapy. The combination of the second near-infrared window (NIR-II) fluorescence imaging (FL) agent (CQ4T) and the photothermal and photoacoustic (PA) properties of Ti3C2 (TC) enables real-time monitoring of the tumor area and guides photothermal treatment. Simultaneously, due to the acid-responsive H2 release characteristics of the nanoplatform, H2 can be utilized for synergistic photothermal therapy to eradicate tumor cells effectively. Significantly, acting as an antioxidant and anti-inflammatory agent, Ti3C2-BSA-CQ4T-H2 (TCBCH) protects peritumoral normal cells from damage. The proposed technique utilizing H2 gas for combination therapies and multimodal imaging integration exhibits prospects for effective and secure treatment of tumors in future clinical applications.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mengting Gao
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhang Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenxuan Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shichao Meng
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Zhang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chongqing Zhang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Pengmin Liu
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
| |
Collapse
|
4
|
Ni H, Zhou H, Liang X, Ge Y, Chen H, Liu J, Wang B, Chen H, Zhang Y, Luo S, Chen Y, Lu X, Yin C, Fan Q. Reactive Oxygen Species-Responsive Nanoparticle Delivery of Small Interfering Ribonucleic Acid Targeting Olfactory Receptor 2 for Atherosclerosis Theranostics. ACS NANO 2024; 18:23599-23614. [PMID: 39141682 DOI: 10.1021/acsnano.4c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disorder characterized by arterial intimal lipid plaques. Small interfering ribonucleic acid (siRNA)-based therapies, with their ability to suppress specific genes with high targeting precision and minimal side effects, have shown great potential for AS treatment. However, targets of siRNA therapies based on macrophages for AS treatment are still limited. Olfactory receptor 2 (Olfr2), a potential target for plaque formation, was discovered recently. Herein, anti-Olfr2 siRNA (si-Olfr2) targeting macrophages was designed, and the theranostic platform encapsulating si-Olfr2 to target macrophages within atherosclerotic lesions was also developed, with the aim of downregulating Olfr2, as well as diagnosing AS through photoacoustic imaging (PAI) in the second near-infrared (NIR-II) window with high resolution. By utilization of a reactive oxygen species (ROS)-responsive nanocarrier system, the expression of Olfr2 on macrophages within atherosclerotic plaques was effectively downregulated, leading to the inhibition of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and interleukin-1 β (IL-1β) secretion, thereby reducing the formation of atherosclerotic plaques. As manifested by decreased Olfr2 expression, the lesions exhibited a significantly alleviated inflammatory response that led to reduced lipid deposition, macrophage apoptosis, and a noticeable decrease in the necrotic areas. This study provides a proof of concept for evaluating the theranostic nanoplatform to specifically deliver si-Olfr2 to lesional macrophages for AS diagnosis and treatment.
Collapse
Affiliation(s)
- Huaner Ni
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hui Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xin Liang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yulong Ge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hangwei Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junyi Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ben Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Huiyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yujing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Sihan Luo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Ying Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou 450001, China
| | - Chao Yin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
5
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
6
|
Li K, Wang J, Wang J, Zheng Z, Liu X, Wang J, Zhang C, He S, Wei H, Yu CY. A Programmable Microfluidic Paper-Based Analytical Device for Simultaneous Colorimetric and Photothermal Visual Sensing of Multiple Enzyme Activities. Anal Chem 2024; 96:12181-12188. [PMID: 38975840 DOI: 10.1021/acs.analchem.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (μPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this μPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.
Collapse
Affiliation(s)
- Kailing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jieqiong Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenjing Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China
| |
Collapse
|
7
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
8
|
Liu H, Zhang X, Li X, Wu P. NIR-II-Absorbing TMB Derivative for 1064 nm-Excited Photothermal Immunoassay. Anal Chem 2024; 96:5633-5639. [PMID: 38529943 DOI: 10.1021/acs.analchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Materials exhibiting strong absorption in the NIR-II region are appealing for photothermal conversion-based imaging, diagnosis, and therapy, due to better thermal effect and decreased absorption of water in such a region. 3,3',5,5'-Tetramethylbenzidine (TMB), the typical substrate in ELISA, has been explored in photothermal immunoassay, since its oxidation product (oxTMB) is photothermally active in the NIR region. However, its absorption at 1064 nm (the most often used laser wavelength in photothermal studies) is not appreciable, thus limiting the assay sensitivity. Here, we proposed a derivative of TMB (3,3'-dimethoxy-5,5'-dimethylbenzidine, 2-OCH3) bearing higher NIR-II absorption for 1064 nm-excited photothermal immunoassay. Since electron-donating groups can help decrease the energy gap of molecules (here -CH3 → -OCH3), the oxidation product of 2-OCH3 exhibited substantially red-shifted absorption as compared with oxTMB, leading to a more than twofold higher absorption coefficient at 1064 nm. As a result, 2-OCH3 showed enhanced sensitivity over TMB in a photothermal immunoassay (PTIA), yielding a limit of detection (LOD) of 0.1 ng/mL for prostate-specific antigen (PSA). The feasibility of 2-OCH3-based PTIA for diagnosis was further validated by analyzing PSA in 61 serum samples. Considering its superior photothermal performance, 2-OCH3 can be explored for a broad range of photothermal applications.
Collapse
Affiliation(s)
- Henglin Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Zhu H, Ding X, Wang C, Cao M, Yu B, Cong H, Shen Y. Preparation of rare earth-doped nano-fluorescent materials in the second near-infrared region and their application in biological imaging. J Mater Chem B 2024; 12:1947-1972. [PMID: 38299679 DOI: 10.1039/d3tb01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging (FLI) has gained widespread interest in the biomedical field because of its advantages of high sensitivity and high penetration depth. In particular, rare earth-doped nanoprobes (RENPs) have shown completely different physical and chemical properties from macroscopic substances owing to their unique size and structure. This paper reviews the synthesis methods and types of RENPs for NIR-II imaging, focusing on new methods to enhance the luminous intensity of RENPs and multi-band imaging and multi-mode imaging of RENPs in biological applications. This review also presents an overview of the challenges and future development prospects based on RENPs in NIR-II regional bioimaging.
Collapse
Affiliation(s)
- Hetong Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xin Ding
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
10
|
Li X, Zhu W, Zhou Y, Wang N, Gao X, Sun S, Cao M, Zhang Z, Hu G. Near-infrared light-heatable platinum nanozyme for synergistic bacterial inhibition. Front Bioeng Biotechnol 2024; 12:1355004. [PMID: 38292827 PMCID: PMC10824886 DOI: 10.3389/fbioe.2024.1355004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The development of non-antibiotic strategies for bacterial disinfection is of great clinical importance. Among recently developed different antimicrobial strategies, nanomaterial-mediated approaches, especially the photothermal way and reactive oxygen species (ROS)-generating method, show many significant advantages. Although promising, the clinical application of nanomaterials is still limited, owing to the potential biosafety issues. Further improvement of the antimicrobial activity to reduce the usage, and thus reduce the potential risk, is an important way to increase the clinical applicability of antibacterial nanomaterials. In this paper, an antimicrobial nanostructure with both an excellent photothermal effect and peroxidase-like activity was constructed to achieve efficient synergistic antimicrobial activity. The obtained nano-antimicrobial agent (ZIF-8@PDA@Pt) can not only efficiently catalyze the production of ROS from H2O2 to cause damage to bacteria but also convert the photon energy of near-infrared light into thermal energy to kill bacteria, and the two synergistic effects induced in a highly efficient antimicrobial activity. This study not only offers a new nanomaterial with efficient antibacterial activity but also proposes a new idea for constructing synergistic antibacterial properties.
Collapse
Affiliation(s)
- Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou, Zhejiang, China
| | - Weisheng Zhu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Nan Wang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiangfan Gao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Suling Sun
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mengting Cao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhijun Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, China
| | - Guixian Hu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Dirersa WB, Kan TC, Getachew G, Wibrianto A, Ochirbat S, Rasal A, Chang J, Chang JY. Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO x-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55258-55275. [PMID: 38013418 DOI: 10.1021/acsami.3c10733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In recent studies, iron-containing Fenton nanocatalysts have demonstrated significant promise for clinical use due to their effective antitumor activity and low cytotoxicity. A new approach was reported in this work utilizing cation exchange synthesis to fabricate FeMnOx nanoparticles (NPs) that boost Fenton reactions and responses to the tumor microenvironment (TME) for chemodynamic therapy (CDT) and chemotherapy (CT). Within the TME, the redox metal pair of Fe2+/Mn2+ helps break down endogenous hydrogen peroxide (H2O2) into very harmful hydroxyl radicals (•OH) while simultaneously deactivating glutathione (GSH) to boost CDT performance. To further enhance the therapeutic potential, FeMnOx NPs were encapsulated with thioketal-linked camptothecin (CPT-TK-COOH), a reactive oxygen species (ROS)-responsive prodrug, achieving a high CPT-loading capacity of up to 51.1%. Upon ROS generation through the Fenton reaction, the prodrug TK linkage was disrupted, releasing 80% of the CPT payload within 48 h. Notably, FeMnOx@CPT exhibited excellent dual-modal imaging capabilities, enabling magnetic resonance and fluorescence imaging for image-guided therapy. In vitro studies showed the cytocompatibility of FeMnOx NPs using MDA-Mb-231 and 4T1 cells, but in the presence of H2O2, they induced significant cytotoxicity, resulting in 80% cell death through CDT and CT effects. Upon intravenous administration, FeMnOx@CPT displayed remarkable tumor accumulation, which enhanced tumor suppression in xenografts through improved CDT and CT effects. Moreover, no significant adverse effects were observed in the FeMnOx NP-treated animals. In the current study, the FeMnOx@CPT anticancer platform, with its boosted •OH-producing capability and ROS-cleavable drug release, has been validated utilizing in vitro and animal studies, suggesting its capacity as a viable strategy for clinical trials.
Collapse
Affiliation(s)
- Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Akash Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
12
|
Xu Y, Bian J, Liu X, Qian Z, Sun M, Zhang C, Pan R, Li Q, Sun C, Lin B, Peng K, Lu N, Yao X, Fan W. Glucose-responsive enzymatic biomimetic nanodots for H 2O 2 self-supplied catalytic photothermal/chemodynamic anticancer therapy. Acta Biomater 2023; 172:441-453. [PMID: 37802309 DOI: 10.1016/j.actbio.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Photothermal therapy (PTT) combined with chemodynamic therapy (CDT) presents an appealing complementary anti-tumor strategy, wherein PTT accelerates the production of reactive oxygen species (ROS) in CDT and CDT eliminates residual tumor tissues that survive from PTT treatment. However, nanomaterials utilized in PTT/CDT are limited by non-specific damage to the entire organism. Herein, a glucose-responsive enzymatic Fe@HRP-ABTS/GOx nanodot is judiciously designed for tumor-specific PTT/CDT via a simple and clean protein-templated biomimetic mineralization synthesis. By oxidizing glucose in tumor cells, glucose oxidase (GOx) activates glucose-responsive tumor therapy and increases the concentration of H2O2 at the tumor site. More importantly, the self-supplied peroxide hydrogen (H2O2) can convert ABTS (2,2'-Hydrazine-bis(3-ethylbenzothiazoline-6-sulfonic acid) diamine salt) into oxidized ABTS (oxABTS) through horseradish peroxidase (HRP) catalysis for PTT and photoacoustic (PA) imaging. Furthermore, the Fe2+ arising from the reduction of Fe3+ by overexpressed GSH reacts with H2O2 to generate intensely reactive •OH through the Fenton reaction, concurrently depleting GSH and inducing efficient tumor CDT. The in vitro and in vivo experiments demonstrate superior cancer cell killing and tumor eradication effect of Fe@HRP-ABTS/GOx nanodot under near-infrared (NIR) laser irradiation. Collectively, the nanodots provide mutually reinforcing catalytic PTT/CDT anti-tumor strategies for treating liver cancer and potentially other malignancies. STATEMENT OF SIGNIFICANCE: Combinatorial antitumor therapy with nanomedicines presents great prospects for development. However, the limitation of non-specific damage to normal tissues hinders its further clinical application. In this work, we fabricated tumor-selective biomimetic Fe@HRP-ABTS/GOx nanodots for H2O2 self-supplied catalytic photothermal/chemodynamic therapy of tumors. The biomimetic synthesis strategy provides the nanodots with enzymatic activity in response to glucose to produce H2O2. The self-supplied H2O2 initiates photothermal therapy with oxidized ABTS and enhances chemodynamic therapy through simultaneous •OH generation and GSH depletion. Our work provides a new paradigm for developing tumor-selective catalytic nanomedicines and will guide further clinical translation of the enzymatic biomimetic synthesis strategy.
Collapse
Affiliation(s)
- Yinghui Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayi Bian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengzheng Qian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Minghao Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Ruiyang Pan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Qitong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Bin Lin
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kun Peng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Nan Lu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Chen Z, Guo W, Liang T, Zheng Y, Niu M, Yang D, Tan L, Fu C, Wu Q, Ren X, Yu J, Liang P, Ren J, Meng X. Logic gate controlled theranostic nanoagents for in situ microwave thermal therapeutic efficacy evaluation. Biomaterials 2023; 302:122299. [PMID: 37673000 DOI: 10.1016/j.biomaterials.2023.122299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
In vivo monitoring of treatment response is of great significance for tumor therapy in clinical trials, but it remains a formidable challenge. Herein, we demonstrate a logic AND gate theranostic nanoagent that responds to the coexistence of endogenous and exogenous stimuli, namely HAuCl4@1-Tetradecanol@Gd-based metal-organic framework@SiO2 nanocomposites (APGS NCs). Upon microwave (MW) irradiation, HAuCl4 in the inner part of APGS NCs reacts with the tumor-associated glutathione (GSH). Subsequently, it transforms into an active luminescent form of Au@1-Tetradecanol@Gd-MOF@SiO2 nanocomposites (AuPGS NCs). The intensity of generated fluorescence is correlated with the tumor thermal-injury status. Thus, the generation of AuPGS NCs with high intensity fluorescence under the co-activation of MW and GSH can visualize the treatment effects during MW thermal therapy and instantly modulate the irradiation time and range for optimal outcomes. Hence, this logic gate controlled APGS NCs makes MW thermal therapy eliminate tumor cells completely. This research offers an effective strategy for the design and preparation of activatable theranostic nanoagents for precise tumor imaging and therapy.
Collapse
Affiliation(s)
- Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Tiansong Liang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingjuan Zheng
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, China
| | - Daoke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
14
|
Cai X, Liu R, Yan H, Jiao L, Sha M, Chen Y, Rong S, Liu Z, Deng L, Shen L, Zhu C. Cascaded Nanozyme with In Situ Enhanced Photothermal Capacity for Tumor-Specific and Self-Replenishing Cancer Therapy. Adv Healthc Mater 2023; 12:e2300516. [PMID: 37285596 DOI: 10.1002/adhm.202300516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species (ROS)-involved tumor therapeutic strategy, chemodynamic therapy (CDT), has attracted extensive research interest in the scientific community. However, the therapeutic effect of CDT is insufficient and unsustainable owing to the limited endogenous H2 O2 level in the tumor microenvironment. Here, peroxidase (POD)-like RuTe2 nanozyme with the immobilization of glucose oxidase (GOx) and allochroic 3,3',5,5'-tetramethylbenzidine (TMB) molecule have been synthesized to construct RuTe2 -GOx-TMB nanoreactors (RGT NRs) as cascade reaction systems for tumor-specific and self-replenishing cancer therapy. GOx in sequential nanocatalysts can effectively deplete glucose in tumor cells. Meanwhile, a sustainable supply of H2 O2 for subsequent Fenton-like reactions catalyzed by RuTe2 nanozyme is achieved in response to the mild acidic tumor microenvironment. Through this cascade reaction, highly toxic hydroxyl radicals (·OH) are produced, which can further oxidize TMB to trigger tumor-specific "turn-on" photothermal therapy (PTT). In addition, PTT and massive ROS can stimulate the tumor immune microenvironment and activate the systematic anti-tumor immune responses, exerting a notable effect on hindering tumor recurrence and metastasis. This study paves a promising paradigm for synergistic starvation therapy, PTT, and CDT cancer therapy with high efficiency.
Collapse
Affiliation(s)
- Xiaoli Cai
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Renyu Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongye Yan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Meng Sha
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yifeng Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liu Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
15
|
Shen H, Zhang C, Wang C, Jiang J, Tang F, Li C, Yuan H, Yang X, Tong Z, Huang Y. Lutein-Based pH and Photo Dual-Responsive Novel Liposomes Coated with Ce6 and PTX for Tumor Therapy. ACS OMEGA 2023; 8:31436-31449. [PMID: 37663483 PMCID: PMC10468958 DOI: 10.1021/acsomega.3c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Liposomes are considered the best nanocarrier for delivering cancer drugs such as chlorin e6 (Ce6) and paclitaxel (PTX). However, the poor stability and non-selectivity release of liposomes may severely limit their further applications. In this study, based on the characteristics of lutein (L) photo-response and orthoester (OE) acid-response, stable and dual-responsive liposomes (Dr-lips) have been prepared. The Dr-lips exhibited a spherical shape with a uniform size of approximately 58.27 nm. Moreover, they displayed a zeta potential ranging from -45.45 to -28.25 mV and showed excellent storage stability, indicating stable colloidal properties. Additionally, they achieved high drug encapsulation rates, with 92.27% for PTX and 90.34% for Ce6, respectively. Meanwhile, under near-infrared (NIR) light at 660 nm, Ce6 plays a key role in accelerating the photodegradation rate of lutein and PEG-OE-L while also enhancing tissue penetration ability. Additionally, Dr-lips loaded with Ce6 and PTX not only displayed excellent pH and photo dual-responsiveness for targeted delivering and releasing but also showed remarkable reactive oxygen species (ROS) generation capacity and impressive anti-tumor activity in vitro. Therefore, it provides a novel strategy for optimizing stability and enhancing their targeted drug delivery of liposome.
Collapse
Affiliation(s)
- Hong Shen
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Department
of Chemistry and Chemical Engineering, Beijing
Forestry University, Beijing 100083, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, China
| | - Changwei Zhang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, China
| | - Chengzhang Wang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, China
| | - Jianxin Jiang
- Department
of Chemistry and Chemical Engineering, Beijing
Forestry University, Beijing 100083, China
| | - Fengxia Tang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Department
of Chemistry and Chemical Engineering, Beijing
Forestry University, Beijing 100083, China
| | - Chuan Li
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Hua Yuan
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Xiaoran Yang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhenkai Tong
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Yi Huang
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| |
Collapse
|
16
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
17
|
Huang Q, Zhu W, Gao X, Liu X, Zhang Z, Xing B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 2023; 195:114763. [PMID: 36841331 DOI: 10.1016/j.addr.2023.114763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ion channels are transmembrane proteins ubiquitously expressed in all cells that control various ions (e.g. Na+, K+, Ca2+ and Cl- etc) crossing cellular plasma membrane, which play critical roles in physiological processes including regulating signal transduction, cell proliferation as well as excitatory cell excitation and conduction. Abnormal ion channel function is usually associated with dysfunctions and many diseases, such as neurodegenerative disorders, ophthalmic diseases, pulmonary diseases and even cancers. The precise regulation of ion channels not only helps to decipher physiological and pathological processes, but also is expected to become cutting-edge means for disease treatment. Recently, nanoparticles-mediated ion channel manipulation emerges as a highly promising way to meet the increasing requirements with respect to their simple, efficient, precise, spatiotemporally controllable and non-invasive regulation in biomedicine and other research frontiers. Thanks the advantages of their unique properties, nanoparticles can not only directly block the pore sites or kinetics of ion channels through their tiny size effect, and perturb active voltage-gated ion channel by their charged surface, but they can also act as antennas to conduct or enhance external physical stimuli to achieve spatiotemporal, precise and efficient regulation of various ion channel activities (e.g. light-, mechanical-, and temperature-gated ion channels etc). So far, nanoparticles-mediated ion channel regulation has shown potential prospects in many biomedical fields at the interfaces of neuro- and cardiovascular modulation, physiological function regeneration and tumor therapy et al. Towards such important fields, in this typical review, we specifically outline the latest studies of different types of ion channels and their activities relevant to the diseases. In addition, the different types of stimulation responsive nanoparticles, their interaction modes and targeting strategies towards the plasma membrane ion channels will be systematically summarized. More importantly, the ion channel regulatory methods mediated by functional nanoparticles and their bioapplications associated with physiological modulation and therapeutic development will be discussed. Last but not least, current challenges and future perspectives in this field will be covered as well.
Collapse
Affiliation(s)
- Qiwen Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyin Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Liu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
18
|
Chen Y, Zhuo M, Wen X, Chen W, Zhang K, Li M. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206830. [PMID: 36707495 PMCID: PMC10104673 DOI: 10.1002/advs.202206830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Indexed: 05/22/2023]
Abstract
Organic photothermal cocrystals, integrating the advantages of intrinsic organic cocrystals and the fascinating photothermal conversion ability, hold attracted considerable interest in both basic science and practical applications, involving photoacoustic imaging, seawater desalination, and photothermal therapy, and so on. However, these organic photothermal cocrystals currently suffer individual cases discovered step by step, as well as the deep and systemic investigation in the corresponding photothermal conversion mechanisms is rarely carried out, suggesting a huge challenge for their further developments. Therefore, it is urgently necessary to investigate and explore the rational design and synthesis of high-performance organic photothermal cocrystals for future applications. This review first and systematically summarizes the organic photothermal cocrystal in terms of molecular classification, the photothermal conversion mechanism, and their corresponding applications. The timely interpretation of the cocrystal photothermal effect will provide broad prospects for the purposeful fabrication of excellent organic photothermal cocrystals toward great efficiency, low cost, and multifunctionality.
Collapse
Affiliation(s)
- Ye‐Tao Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ming‐Peng Zhuo
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Xinyi Wen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ke‐Qin Zhang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ming‐De Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
- Chemistry and Chemical Engineering Guangdong LaboratoryShantou UniversityShantou515031China
| |
Collapse
|
19
|
Dong S, Dong Y, Zhao Z, Liu J, Liu S, Feng L, He F, Gai S, Xie Y, Yang P. "Electron Transport Chain Interference" Strategy of Amplified Mild-Photothermal Therapy and Defect-Engineered Multi-Enzymatic Activities for Synergistic Tumor-Personalized Suppression. J Am Chem Soc 2023; 145:9488-9507. [PMID: 36998235 DOI: 10.1021/jacs.2c09608] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Arming activatable mild-photothermal therapy (PTT) with the property of relieving tumor thermotolerance holds great promise for overcoming traditional mild PTT limitations such as thermoresistance, insufficient therapeutic effect, and off-target heating. Herein, a mitochondria-targeting, defect-engineered AFCT nanozyme with enhanced multi-enzymatic activity was elaborately designed as a tumor microenvironment (TME)-activatable phototheranostic agent to achieve remarkable anti-tumor therapy via "electron transport chain (ETC) interference and synergistic adjuvant therapy". Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the AFCT nanozymes with excellent catalytic activity. In TME, open sources of H2O2 can be achieved by superoxide dismutase-mimicking AFCT nanozymes. In response to the dual stimuli of H2O2 and mild acidity, the peroxidase-mimicking activity of AFCT nanozymes not only catalyzes the accumulation of H2O2 to generate ·OH but also converts the loaded 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) into its oxidized form with strong near-infrared absorption, specifically unlocking its photothermal and photoacoustic imaging properties. Intriguingly, the undesired thermoresistance of tumor cells can be greatly alleviated owing to the reduced expression of heat shock proteins enabled by NADH POD-mimicking AFCT-mediated NADH depletion and consequent restriction of ATP supply. Meanwhile, the accumulated ·OH can facilitate both apoptosis and ferroptosis in tumor cells, resulting in synergistic therapeutic outcomes in combination with TME-activated mild PTT.
Collapse
Affiliation(s)
- Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Zhiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
20
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi MM, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A, Pandey S. TiO2-based nanocomposites for cancer diagnosis and therapy: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
21
|
Qiao L, Lang W, Sun C, Huang Y, Wu P, Cai C, Xing B. Near Infrared-II Photothermal and Colorimetric Synergistic Sensing for Intelligent Onsite Dietary Myrosinase Profiling. Anal Chem 2023; 95:3856-3863. [PMID: 36756955 DOI: 10.1021/acs.analchem.2c05474] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Myrosinase (Myr) is a type of critical β-thioglucosidase enzyme activator essential for sustaining many functional foods to perform their health-promoting functions. An accurate and reliable Myr test is meaningful for food quality and dietary nutrition assessments, whereas the currently reported methods do not guarantee specificity and have high reliance on instrumentation, which are not suitable for rapid and onsite Myr screening especially in complex systems from various sources. Herein, we present a unique NIR-II absorption-based photothermal-responsive colorimetric biosensor for anti-interference onsite Myr determination and realization of rapid visualized outputs with the aid of smartphone calculation. Typically, assisted by glucose oxidase (GOx), Myr specifically converts the sinigrin substrate into hydrogen peroxide (H2O2) that can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by AuNPs to form a charge transfer complex (CTC) with NIR-II absorption and photothermal characters. Delightfully, such a proposed method is able to determine Myr within a wide range of 0 to 172.5 mU/mL with a detection limit down to 2.96 mU/mL. Moreover, simple, rapid, and real-time visual Myr identification in actual food-sourced samples could also be readily achieved by smartphone readout processing, with the promising advantages of anti-interference, high accuracy, and low cost as well as labor-saving and intelligence engagement, thus providing great feasibility for precise measurement in complex and dynamic dietary sample analysis. Overall, our proposed method presents a novel technology for onsite dietary Myr enzyme profiling, which is promising to be applied in the food industry for nutritional composition profiles, freshness evaluation, and quality assessment.
Collapse
Affiliation(s)
- Ling Qiao
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wenchao Lang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yining Huang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
22
|
Wang S, Luo Y, Wen C, Zhao S, Zhang L. An autocatalytically-activatable hydrogen peroxide photoacoustic sensor for in situ visualization precise diagnosis and drug intervention tracing in diabetes syndrome. Biosens Bioelectron 2023; 222:114964. [PMID: 36493721 DOI: 10.1016/j.bios.2022.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
In situ visualization for the diagnosis of diabetic syndrome and visual monitoring the response to drug treatment is a challenge. Herein, we designed and prepared an autocatalytically-activatable hydrogen peroxide photoacoustic (PA) sensor. We first prepared the FeMoOx nanoparticle with catalase activity, then combined it to 2,2'-azino-bis(3-ethylbenzothi-azoline-6-sulfonic acid) (ABTS) and distearoylphos-phoethanola-mine-polyethylene-glycol (DSPE-PEG) to construct a autocatalytically-activatable PA sensor (FeMoOx@ABTS@DSPE-PEG). In its presence, ABTS can be converted into oxidized ABTS·+ by H2O2. ABTS·+ exhibits strong light absorption in the near-infrared region, and can serve as an ideal contrast agent for PA imaging. H2O2 as a biomarker of oxidative stress response is closely related to the occurrence and development of diabetes mellitus and its complications. Therefore, FeMoOx@ABTS@DSPE-PEG was used as a PA sensor of H2O2 for visual monitoring of the progression of diabetes-induced liver injury and metformin-mediated treatment of diabetes. The autocatalytically-activatable PA sensor developed in this study provides a promising platform for in situ visual diagnosis of diabetes and its syndrome and monitoring the response to therapy.
Collapse
Affiliation(s)
- Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
23
|
Zhang H, Zhu C, Liang J, Li S, Hu LF, Liang H, Kuo WS, Shen XC. Smart Phototheranostics based on Carbon Nanohorns for Precise Imaging-Guided Post-PDT toward Residual Tumor Cells after Initial Phototherapy. Chemistry 2023; 29:e202203196. [PMID: 36331360 DOI: 10.1002/chem.202203196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
As promising photonic material, phototheranostics can be activated in the laser irradiation range of tumor with sensitivity and spatiotemporal precision. However, it is difficult to completely eradicate solid tumors due to their irregularity and limited laser irradiation area. Herein, multi-stimulus responsive HA-Ce6@SWNHs were constructed with single-walled carbon nanohorns (SWNHs) and chlorine e6 (Ce6) modified hyaluronic acid (HA) via non-covalent binding. This SWNHs-based phototheranostics not only exhibited water dispersion but also could target tumor and be activated by near-infrared light for photodynamic therapy (PDT) and photothermal therapy (PTT). Additionally, HA-Ce6@SWNHs could be degraded by hyaluronidase in residual tumor cells, causing HA-Ce6 to fall off the SWNHs surfaces to restore autofluorescence, thus precisely guiding the programmed photodynamic treatments for residual tumor cells after the initial phototherapy. Thus, this work provides a rationally designed multiple-stimulus-response strategy to develop smart SWNHs-based phototheranostics for precise PDT/PTT and post-treatment imaging-guided PDT of residual tumor cells.
Collapse
Affiliation(s)
- Hengming Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jiawei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shuzhen Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Lan-Fang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Wen-Shuo Kuo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.,School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, P. R. China.,Center for Allergy Immunology and Microbiome (AIM) China Medical University Children's Hospital/China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
24
|
Chen C, Chen Y, Wang X, Zhang L, Luo Y, Tang Q, Wang Y, Liang X, Ma C. In situ synthesized nanozyme for photoacoustic-imaging-guided photothermal therapy and tumor hypoxia relief. iScience 2023; 26:106066. [PMID: 36818293 PMCID: PMC9929682 DOI: 10.1016/j.isci.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Nanozymes have attracted extensive research interest due to their ideal enzymatic catalytic performance; however, uncontrollable activities and nonspecific accumulation limit their further clinical application. To overcome these obstacles, we proposed in situ synthesized nanozyme, and realized the concept through an intelligent nanosystem (ISSzyme) based on Prussian blue (PB) precursor. PB nanozyme was synthesized at the tumor sites through the interaction of ISSzyme with glutathione, which was demonstrated by comparing with conventional PB nanozyme. ISSzyme is capable of tumor-specific photoacoustic imaging (PAI) and photothermal therapy (PTT), reducing the false-positive signals of PAI and the treatment side effects of PTT. ISSzyme has catalase-like activities, resulting in tumor hypoxia relief and metastasis inhibition. More importantly, the in situ synthesized PB nanozyme has the favorable property of minimal liver accumulation. Considering the above advantages, ISSzyme is expected to shed light on the design of the next-generation artificial enzymes, with many new biomedical applications.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China,Corresponding author
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China,Institute for Precision Healthcare, Tsinghua University, Beijing 100084, China,Corresponding author
| |
Collapse
|
25
|
Zhang L, Ma S, Wang T, Li S, Wang L, Li D, Tian Y, Zhang Q. Four-Photon Absorption Iron Complex for Magnetic Resonance/Photoacoustic Dual-Model Imaging and an Enhanced Ferroptosis Process. Anal Chem 2023; 95:1635-1642. [PMID: 36533710 DOI: 10.1021/acs.analchem.2c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four-photon absorption (4PA) multimodal therapeutic agent applied to tumor ferroptosis process tracking is rarely reported. In this paper, two functionalized terpyridine iron complexes (TD-FeCl3, TD-Fe-TD) with four-photon absorption properties were designed and synthesized. The four-photon absorption cross sections of TD-FeCl3 reached 6.87 × 10-74cm8·s3·photon-3. Due to its strong near-infrared absorption, TD-FeCl3 has excellent photoacoustic imaging (PAI) capability for accurate PA imaging. TD-FeCl3 has an efficient longitudinal electron relaxation rate (r1 = 2.26 mM-1 s-1) and high spatial resolution, which can be applied as T1-weighted magnetic resonance imaging (MRI) contrast agent for tumor imaging in vivo. In addition, Fe3+ as a natural ferroptosis tracer, TD-FeCl3, is able to deplete glutathione (GSH) effectively, which can further enhance the ferroptosis process. We found that the series of cheap transition metal complexes has four-photon absorption activity and can be used as multimodal (MRI/PAI) diagnostic agents for tumor tracing processes.
Collapse
Affiliation(s)
- Lidi Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Shanheng Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tao Wang
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Shengli Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Lianke Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
26
|
Tian F, Li F, Ren L, Wang Q, Jiang C, Zhang Y, Li M, Song X, Zhang S. Acoustic-Based Theranostic Probes Activated by Tumor Microenvironment for Accurate Tumor Diagnosis and Assisted Tumor Therapy. ACS Sens 2022; 7:3611-3633. [PMID: 36455009 DOI: 10.1021/acssensors.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Acoustic-based imaging techniques, including ultrasonography and photoacoustic imaging, are powerful noninvasive approaches for tumor imaging owing to sound transmission facilitation, deep tissue penetration, and high spatiotemporal resolution. Usually, imaging modes were classified into "always-on" mode and "activatable" mode. Conventional "always-on" acoustic-based probes often have difficulty distinguishing lesion regions of interest from surrounding healthy tissues due to poor target-to-background signal ratios. As compared, activatable probes have attracted attention with improved sensitivity, which can boost or amplify imaging signals only in response to specific biomolecular recognition or interactions. The tumor microenvironment (TME) exhibits abnormal physiological conditions that can be used to identify tumor sections from normal tissues. Various types of organic dyes and biomaterials can react with TME, leading to obvious changes in their optical properties. The TME also affects the self-assembly or aggregation state of nanoparticles, which can be used to design activatable imaging probes. Moreover, acoustic-based imaging probes and therapeutic agents can be coencapsulated into one nanocarrier to develop nanotheranostic probes, achieving tumor imaging and cooperative therapy. Satisfactorily, ultrasound waves not only accelerate the release of encapsulated therapeutic agents but also activate therapeutic agents to exert or enhance their therapeutic performance. Meanwhile, various photoacoustic probes can convert photon energy into heat under irradiation, achieving photoacoustic imaging and cooperative photothermal therapy. In this review, we focus on the recently developed TME-triggered ultrasound and photoacoustic theranostic probes for precise tumor imaging and targeted tumor therapy.
Collapse
Affiliation(s)
- Feng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Fengyan Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Linlin Ren
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Chengfang Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Yuqi Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Mengmeng Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| |
Collapse
|
27
|
Wu W, Pu Y, Gao S, Shen Y, Zhou M, Yao H, Shi J. Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy. NANO-MICRO LETTERS 2022; 14:220. [PMID: 36367591 PMCID: PMC9652197 DOI: 10.1007/s40820-022-00951-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The low immunogenicity of tumors remains one of the major limitations of cancer immunotherapy. Herein, we report a bacterial metabolism-initiated and photothermal-enhanced nanocatalytic therapy strategy to completely eradicate primary tumor by triggering highly effective antitumor immune responses. Briefly, a microbiotic nanomedicine, designated as Cu2O@ΔSt, has been constructed by conjugating PEGylated Cu2O nanoparticles on the surface of an engineered Salmonella typhimurium strain (ΔSt). Owing to the natural hypoxia tropism of ΔSt, Cu2O@ΔSt could selectively colonize hypoxic solid tumors, thus minimizing the adverse effects of the bacteria on normal tissues. Upon bacterial metabolism within the tumor, Cu2O@ΔSt generates H2S gas and other acidic substances in the tumor microenvironment (TME), which will in situ trigger the sulfidation of Cu2O to form CuS facilitating tumor-specific photothermal therapy (PTT) under local NIR laser irradiation on the one hand. Meanwhile, the dissolved Cu+ ions from Cu2O into the acidified TME enables the nanocatalytic tumor therapy by catalyzing the Fenton-like reaction of decomposing endogenous H2O2 into cytotoxic hydroxyl radicals (·OH) on the other hand. Such a bacterial metabolism-triggered PTT-enhanced nanocatalytic treatment could effectively destroy tumor cells and induce a massive release of tumor antigens and damage-associated molecular patterns, thereby sensitizing tumors to checkpoint blockade (ICB) therapy. The combined nanocatalytic and ICB therapy results in the much-inhibited growth of distant and metastatic tumors, and more importantly, induces a powerful immunological memory effect after the primary tumor ablation.
Collapse
Affiliation(s)
- Wencheng Wu
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Shanghai Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, People's Republic of China
| | - Yinying Pu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Shuang Gao
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, People's Republic of China
| | - Yucui Shen
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, People's Republic of China
| | - Min Zhou
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, People's Republic of China.
| | - Heliang Yao
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Shanghai Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, People's Republic of China
| | - Jianlin Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Shanghai Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, People's Republic of China.
| |
Collapse
|
28
|
Chen C, Chen Y, Zhang L, Wang X, Tang Q, Luo Y, Wang Y, Ma C, Liang X. Dual-targeting nanozyme for tumor activatable photo-chemodynamic theranostics. J Nanobiotechnology 2022; 20:466. [PMID: 36329465 PMCID: PMC9632160 DOI: 10.1186/s12951-022-01662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor phototheranostics holds a great promise on account of its high spatiotemporal resolution, tumor-specificity, and noninvasiveness. However, physical limitation of light penetration and "always on" properties of conventional photothermal-conversion agents usually cause difficulty in accurate diagnosis and completely elimination of tumor. Meanwhile, nanozymes mediated Fenton reactions can well utilize the tumor microenvironment (TME) to generate hydroxyl radicals for chemodynamic therapy (CDT), but limited by the concentration of H2O2 in TME and the delivery efficiency of nanozymes. To overcome these problems, a dual-targeting nanozyme (FTRNPs) is developed for tumor-specific in situ theranostics, based upon the assembling of ultrasmall Fe3O4 nanoparticles, 3,3',5,5'-tetrameth-ylbenzidine (TMB) and the RGD peptide. The FTRNPs after H2O2 treatment exhibits superior photothermal stability and high photothermal conversion efficiency (η = 50.9%). FTRNPs shows extraordinary accumulation and retention in the tumor site by biological/physical dual-targeting, which is 3.54-fold higher than that without active targeting. Cascade-dual-response to TME for nanozymes mediated Fenton reactions and TMB oxidation further improves the accuracy of both photoacoustic imaging and photothermal therapy (PTT). The tumor inhibition rate of photo-chemodynamic therapy is ~ 97.76%, which is ~ 4-fold higher than that of PTT or CDT only. Thus, the combination of CDT and PTT to construct "turn on" nanoplatform is of great significance to overcome their respective limitations. Considering its optimized "all-in-one" performance, this new nanoplatform is expected to provide an advanced theranostic strategy for the future treatment of cancers.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
- Institute for Precision Healthcare, Tsinghua University, 100084, Beijing, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China.
| |
Collapse
|
29
|
Multifunctional hemoporfin-Cu9S8-MnO2 for magnetic resonance imaging-guided catalytically-assisted photothermal-sonodynamic therapies. J Colloid Interface Sci 2022; 626:77-88. [DOI: 10.1016/j.jcis.2022.06.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/07/2022]
|
30
|
He C, Zhu J, Zhang H, Qiao R, Zhang R. Photoacoustic Imaging Probes for Theranostic Applications. BIOSENSORS 2022; 12:947. [PMID: 36354456 PMCID: PMC9688356 DOI: 10.3390/bios12110947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI), an emerging biomedical imaging technology, capitalizes on a wide range of endogenous chromophores and exogenous contrast agents to offer detailed information related to the functional and molecular content of diseased biological tissues. Compared with traditional imaging technologies, PAI offers outstanding advantages, such as a higher spatial resolution, deeper penetrability in biological tissues, and improved imaging contrast. Based on nanomaterials and small molecular organic dyes, a huge number of contrast agents have recently been developed as PAI probes for disease diagnosis and treatment. Herein, we report the recent advances in the development of nanomaterials and organic dye-based PAI probes. The current challenges in the field and future research directions for the designing and fabrication of PAI probes are proposed.
Collapse
Affiliation(s)
| | | | | | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
31
|
Yin M, Tong J, Meng F, Liu C, Liu X, Fang F, He Z, Qin X, Liu C, Ni D, Gao Y, Liang H, Zhang X, Luo L. Near-Infrared-II Activatable Symbiotic 2D Carbon-Clay Nanohybrids for Dual Imaging-Guided Combinational Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49471-49482. [PMID: 36301911 DOI: 10.1021/acsami.2c11340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) nanomaterials hold great potential for cancer theranostic applications, yet their clinical translation faces great challenges of high toxicity and limited therapeutic/diagnostic modality. Here, we have created a kind of symbiotic 2D carbon-2D clay nanohybrids, which are composed of a novel 2D carbon nanomaterial (carbon nanochips, or CNC), prepared by carbonizing a conjugated polymer polydiiodobutadiyne, and a 2D layered aluminosilicate clay mineral montmorillonite (MMT). Intriguingly, with the formation of the nanohybrids, MMT can help the dispersion of CNC, while CNC can significantly reduce the hemolysis and toxicity of MMT. The symbiotic combination of CNC and MMT also leads to a synergistic anti-cancer theranostic effect. CNC has a strong absorption and high photothermal conversion efficiency in the second near-infrared region (NIR-II, 1000-1700 nm), while MMT contains Fe3+ that can facilitate the generation of reactive oxygen species from highly expressed H2O2 in tumor microenvironment. The nanohybrids not only enable a synergy of photothermal therapy and chemodynamic therapy to suppress the extremely rapid growth of RM1 tumors in mice but also allow for dual photoacoustic and magnetic imaging to guide the drug delivery and NIR-II irradiation execution, hence establishing a highly efficient and biosafe "all-in-one" theranostic platform for precision nanomedicine.
Collapse
Affiliation(s)
- Mingming Yin
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenchen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Fang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojuan Qin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuting Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
32
|
Luo Y, Chen Z, Wen S, Han Q, Fu L, Yan L, Jin D, Bünzli JCG, Bao G. Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Liu Z, Wen J, Zhou G, Xu J, Zhu L, Zhang M, Liu F, Zhang Y. Surface Charge and Nanoparticle Chromophore Coupling to Achieve Fast Exciton Quenching and Efficient Charge Separation in Photoacoustic Imaging (PAI) and Photothermal therapy (PTT). ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zehan Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiangping Wen
- Laboratory Medicine Department The First Hospital of Tsinghua University Beijing 100730 China
| | - Guanqing Zhou
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Jinqiu Xu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Lei Zhu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
34
|
Zeng Y, Dou T, Ma L, Ma J. Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: "Always-On" and "Turn-On" Probes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202384. [PMID: 35773244 PMCID: PMC9443455 DOI: 10.1002/advs.202202384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging is a nonionizing, noninvasive imaging technique that combines optical and ultrasonic imaging modalities to provide images with excellent contrast, spatial resolution, and penetration depth. Exogenous PA contrast agents are created to increase the sensitivity and specificity of PA imaging and to offer diagnostic information for illnesses. The existing PA contrast agents are categorized into two groups in this review: "always-on" and "turn-on," based on their ability to be triggered by target molecules. The present state of these probes, their merits and limitations, and their future development, is explored.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi Province, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi Province, 7100126, P. R. China
| | - Taotao Dou
- Neurosurgery Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Lei Ma
- Vascular Intervention Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| |
Collapse
|
35
|
Xu N, Zhang X, Qi T, Wu Y, Xie X, Chen F, Shao D, Liao J. Biomedical applications and prospects of temperature‐orchestrated photothermal therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022; 1. [DOI: 10.1002/mba2.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 01/06/2025]
Abstract
AbstractPhotothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Collapse
Affiliation(s)
- Nuo Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Tingting Qi
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xi Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau China
| | - Dan Shao
- School of Medicine South China University of Technology Guangzhou Guangdong China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
36
|
Sun J, Cheng N, Yin K, Wang R, Zhu T, Gao J, Dong X, Dong C, Gu X, Zhao C. Activatable photothermal agents with target-initiated large spectral separation for highly effective reduction of side effects. Chem Sci 2022; 13:9525-9530. [PMID: 36128038 PMCID: PMC9400798 DOI: 10.1039/d2sc02467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photothermal agents (PTAs) with minimized side effects are critical for transforming cancer photothermal therapy (PTT) into clinical applications. However, most currently available PTAs lack true selective activation to reduce side effects because of heavy spectral overlap between photothermal agents and their corresponding products. This study reports the construction of activatable PTAs with target-initiated large spectral separation for highly effective reduction of side effects. Such designed probes involve two H2O2-activatable PTAs, aza-BOD-B1 (single activatable site) and aza-BOD-B2 (multiple activatable site). After interacting with H2O2, aza-BOD-B1 only displays a mild absorption redshift (60 nm) from 750 nm to 810 nm with serious spectral overlap, resulting in a mild photothermal effect on normal tissues upon 808 nm light irradiation. In contrast, aza-BOD-B2 displays a large absorption spectral separation (150 nm) from 660 nm to 810 nm, achieving true selective activation to minimize side effects during PTT of cancer. Besides, in vitro and in vivo investigations demonstrated that aza-BOD-B2 can specifically induce photothermal ablation of cancer cells and tumors while leaving normal sites undamaged, whereas aza-BOD-B1 exhibits undesirable side effects on normal cells. Our study provides a practical solution to the problem of undesired side effects of phototherapy, an advance in precision medicine.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Cheng
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Kai Yin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
37
|
Cheng Y, Bo H, Qin R, Chen F, Xue F, An L, Huang G, Tian Q. Hyaluronic acid-coated Bi:Cu 2O: an H 2S-responsive agent for colon cancer with targeted delivery and enhanced photothermal performance. J Nanobiotechnology 2022; 20:346. [PMID: 35883134 PMCID: PMC9327345 DOI: 10.1186/s12951-022-01555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Endogenous hydrogen sulfide (H2S)-responsive theranostic agents have attracted extensive attention due to their specificity for colon cancer. However, the development of such agents with high enrichment in tumors and excellent photothermal performance remains challenging. Results We prepared hyaluronic acid (HA)-coated Bi-doped cuprous oxide (Bi:Cu2O@HA) via a one-pot method. The HA specifically targets colon cancer tumor cells to improve the enrichment of Bi:Cu2O@HA at tumor sites, while the doped Bi both enhances the photothermal performance of the H2S-triggered Cu2O and serves as an agent for tumor imaging. The results in this work demonstrated that the Bi:Cu2O@HA nanoparticles exhibit good biocompatibility, target colon cancer tumor cells, facilitate computed tomography imaging, and enhanced H2S-responsive photothermal therapy performance, resulting in an excellent therapeutic effect in colon cancer. Conclusions The novel Bi:Cu2O@HA nanoparticles exhibit excellent tumor targeting and photothermal therapeutic effects, which provide new strategies and insights for colon cancer therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01555-x.
Collapse
Affiliation(s)
- Yuying Cheng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Haiji Bo
- Department of Pathology, Naval Medical Center of PLA, No. 338 Huaihai West Road, Shanghai, 200052, China
| | - Ruomeng Qin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fulai Chen
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
38
|
Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:070901. [PMID: 36451698 PMCID: PMC9307281 DOI: 10.1117/1.jbo.27.7.070901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Significance Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
Collapse
Affiliation(s)
- Xie Hui
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Mohammad O. A. Malik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
39
|
Wang X, Ye Z, Lin S, Wei L, Xiao L. Nanozyme-Triggered Cascade Reactions from Cup-Shaped Nanomotors Promote Active Cellular Targeting. Research (Wash D C) 2022; 2022:9831012. [PMID: 35935135 PMCID: PMC9275069 DOI: 10.34133/2022/9831012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022] Open
Abstract
Self-propelled nanomotors have shown enormous potential in biomedical applications. Herein, we report on a nanozyme-powered cup-shaped nanomotor for active cellular targeting and synergistic photodynamic/thermal therapy under near-infrared (NIR) laser irradiation. The nanomotor is constructed by the asymmetric decoration of platinum nanoparticles (PtNPs) at the bottom of gold nanocups (GNCs). PtNPs with robust peroxidase- (POD-) like activity are employed not only as propelling elements for nanomotors but also as continuous O2 generators to promote photodynamic therapy via catalyzing endogenous H2O2 decomposition. Owing to the Janus structure, asymmetric propulsion force is generated to trigger the short-ranged directional diffusion, facilitating broader diffusion areas and more efficient cellular searching and uptake. This cascade strategy combines key capabilities, i.e., endogenous substrate-based self-propulsion, active cellular targeting, and enhanced dual-modal therapy, in one multifunctional nanomotor, which is crucial in advancing self-propelled nanomotors towards eventual therapeutic agents.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410082, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
40
|
Wen C, Guo X, Gao C, Zhu Z, Meng N, Shen XC, Liang H. NIR-II-responsive AuNRs@SiO 2-RB@MnO 2 nanotheranostic for multimodal imaging-guided CDT/PTT synergistic cancer therapy. J Mater Chem B 2022; 10:4274-4284. [PMID: 35583909 DOI: 10.1039/d1tb02807c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific tumor-responsive capabilities and efficient synergistic therapeutic performance are the keys to effective tumor treatment. Herein, AuNRs@SiO2-RB@MnO2 was developed as a new type of tumor-responsive nanotheranostic for multimodal imaging and synergistic chemodynamic/photothermal therapy. In AuNRs@SiO2-RB@MnO2, the SiO2 layer wraps the AuNRs, providing light absorption in the second near-infrared (NIR-II) region. The SiO2 layer also adsorbs the MnO2 nanosheets, which have Fenton-like activity, resulting in a fluorescent sensing platform based on the fluorescence quenching properties of MnO2 for rhodamine B dye. The fluorescence can be recovered by the consumption of MnO2 by glutathione, which simultaneously produces Mn2+ in the tumor region. The recovery of fluorescence reflects the consumption of glutathione and the increase in Mn2+, which produces hydroxyl radicals via Fenton-like reaction in the tumor microenvironment to realize chemodynamic therapy. Meanwhile, the AuNRs are a good photothermal reagent that can effectively absorb NIR-II light and convert it into heat energy to kill tumor cells via photothermal therapy. The NIR-II absorption performance of the AuNRs provides good photoacoustic imaging and deep photothermal performance, which is favorable for efficient NIR-II photoacoustic imaging-guided photothermal therapy. As a result, the AuNRs@SiO2-RB@MnO2 nanotheranostic exhibits outstanding imaging and synergistic chemodynamic/photothermal therapeutic performance for tumor imaging and treatment.
Collapse
Affiliation(s)
- Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Zhongkai Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Nianqi Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
41
|
Abstract
Gold nanoparticle (AuNPs)-mediated photothermal therapy (PTT) has attracted increasing attention both in laboratory research and clinical applications. Due to its easily-tuned properties of irradiation light and inside-out hyperthermia ability, it has demonstrated clear advantages in cancer therapy over conventional thermal ablation. Despite this great advancement, the therapeutic efficacy of AuNPs mediated PTT in tumor treatment remains compromised by several obstacles, including low photothermal conversion efficiency, tissue penetration limitation of excitation light, and inherent non-specificity. In view of the rapid development of AuNPs mediated PTT, we present an in-depth review of major breakthroughs in the advanced development of gold nanomaterials for PTT, with emphasis on those from 2010 to date. In particular, the current state of knowledge for AuNPs based photothermal agents within a paradigm of key structure-optical property relationships is presented in order to provide guidance for the design of novel AuNP based photothermal agents to meet necessary functional requirements in specific applications. Furthermore, potential challenges and future development of AuNP mediated PTT are also elucidated for clinical translation. It is expected that AuNP mediated PTT will soon constitute a markedly promising avenue in the treatment of cancer.
Collapse
|
42
|
Chan MH, Huang WT, Chen KC, Su TY, Chan YC, Hsiao M, Liu RS. The optical research progress of nanophosphors composed of transition elements in the fourth period of near-infrared windows I and II for deep-tissue theranostics. NANOSCALE 2022; 14:7123-7136. [PMID: 35353112 DOI: 10.1039/d2nr00343k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research in the field of nano-optics is advancing by leaps and bounds, among which near-infrared (NIR) light optics have attracted much attention. NIR light has a longer wavelength than visible light, such that it can avoid shielding caused by biological tissues. This advantage has driven its importance and practicality in human treatment applications and has attracted significant attention from researchers in academia and industry. In the broad spectrum of infrared light wavelengths, the most noticeable ones are the NIR biological window I of 700-900 nm and window II of 1000-1700 nm. Luminescent materials can effectively cover the NIR biological window with different doping strategies. These doped elements are mostly transition elements with multielectron orbitals. Several nanomaterials based on narrow-spectrum lanthanides have been developed to correspond to biological applications of different wavelengths. However, this review explicitly introduces the absorption and reflection/luminescence interactions between NIR light and biological tissues independently. Unlike the adjustment of the wavelength of the lanthanide series, this review analyzes the NIR optical properties of the fourth-period element ions in transition elements (such as Cr3+ and Ni2+). These elements have a broadband wavelength of NIR light emission and higher quantum efficiency, corresponding to the absorption and emission spectrum and photobiological absorption of different NIR windows for therapeutic diagnosis. Finally, this review lists and explores other broadband NIR phosphors and has tried to discover the possibility of non-invasive precision medicine in the future.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Kuan-Chun Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yung-Chieh Chan
- Intelligent Minimally Invasive Device Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ru-Shi Liu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
43
|
Kong X, Yang Y, Wan G, Chen Q, Yu H, Li B, Wu L. Charge-Transfer Complex Combining Reduced Cluster with Enhanced Stability for Combined Near-Infrared II Photothermal Therapy. Adv Healthc Mater 2022; 11:e2102352. [PMID: 35524986 DOI: 10.1002/adhm.202102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Indexed: 12/12/2022]
Abstract
In the search for materials with enhanced near-infrared (NIR) photothermal properties and capability of providing environment-sensitive therapy, a method that combines isolated components into one nanocomposite is developed. The technique simultaneously involves redox, charge-transfer formation, and ionic complexation. During the polyoxophosphomolybdate (PMo) cluster mixing with biosafe chromogen 3,3',5,5'-tetramethylbenzidine (TMB), the reduced state (rPMo) and the oxidized TMB in the state of charge-transfer complex (cTMB) emerge spontaneously. The two reduced and oxidized components with charges form a stable ionic complex that resists physiology, saline, broad pH, and elevated temperature. Both the rPMo and cTMB contribute to the total sustainable photothermal conversion efficiency of 48.4% in the NIR-II region. The ionic complex exhibits biocompatibility in in vitro cell viability evaluation and is demonstrated to enter tumor cells with sustained photothermal property and complexation stability. Due to the local acidity that triggers further interaction among rPMo clusters, a distinct accumulation of the ionic complex at the tumor position is observed after caudal vein injection. Moreover, a remarkable local NIR-II photothermal image appears. The diminishment of tumor in mice with maintained body weight demonstrates the comprehensive effect of this NIR-II photothermal therapeutic material.
Collapse
Affiliation(s)
- Xueping Kong
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yimeng Yang
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun 130021 P. R. China
| | - Guofeng Wan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Qiuyan Chen
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun 130021 P. R. China
| | - Huimei Yu
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun 130021 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
44
|
Wu J, Zhang Y, Jiang K, Wang X, Blum NT, Zhang J, Jiang S, Lin J, Huang P. Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multistage Augmented Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200062. [PMID: 35243699 DOI: 10.1002/adma.202200062] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Companion diagnostics (CDx) provides critical information for precision medicine. However, current CDx is mostly limited to in vitro tests, which cannot accurately evaluate the disease progression and treatment response in real time. To overcome this challenge, herein a glucose oxidase (GOx)-engineered conjugated polymer (polyaniline, PANI) nanoplatform (denoted as PANITG) is reported for activatable imaging-based CDx and multistage augmented photothermal/starvation synergistic therapy. PANITG comprises a pH-activatable conjugated polymer as a photothermal convertor and photoacoustic (PA) emitter, a GOx as a cancer starvation inducer as well as a H2 O2 and acid producer, and a H2 O2 -cleavable linker as a "switch" for GOx activity. The in vivo PA imaging and photothermal therapy abilities are activated by acidic tumor microenvironment and self-augmented by the reaction between GOx and glucose. Meanwhile, the photothermal effect will enhance the GOx activity in turn. Such multistage augmentation of the therapeutic effects will facilitate effective cancer management. In addition, the in vivo PA imaging with PANITG reveals the tumor pH level which is correlated to the efficiency of the photothermal therapy and to the catalytic activity of GOx at each stage, enabling real-time activatable CDx.
Collapse
Affiliation(s)
- Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyu Wang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
45
|
Li J, Li S, Yang S, Liang M, Jiang X, Wu W. Semiconductor Polymer with Strong NIR-II Absorption for Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED BIO MATERIALS 2022; 5:2224-2231. [PMID: 35465653 DOI: 10.1021/acsabm.2c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Semiconductor polymers have several featured advantages, such as easily tunable optical properties, high light harvesting, good photostability, etc. However, semiconductor polymers with desirable NIR-II absorbance for the applications of both NIR-II photoacoustic (PA) imaging and photothermal therapy (PTT) are still lacking. Herein, we synthesized a donor-acceptor (D-A) type semiconductor polymer PTPTQ with thiophene (TP) as the electron donor and thiadiazoloquinoxaline (TQ) as the acceptor. PTPTQ had a brushlike topological structure with two poly(ethylene glycol) (PEG) chains (2000 Da) in each repeating unit. Such an intriguing structure endowed it with high hydrophilicity, good biocompatibility, and prominent passive tumor targeting ability. PTPTQ exhibited strong absorption in 600-1800 nm and good photostability. Its photothermal conversion efficiency was determined to be about 41.36%, which rendered it excellent properties in NIR-II PA imaging and PTT. By using PTPTQ as a PTT agent, the mouse tumor models can be eradicated. Taken together, the overall properties of PTPTQ make it promising as a tumor theranostic agent.
Collapse
Affiliation(s)
- Jia Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shun Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuo Yang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mengke Liang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
46
|
Zhu C, Wang Y, Li Z, Sun W, Jiang BP, Shen XC. Metallopolysaccharide-Based Smart Nanotheranostic for Imaging-Guided Precise Phototherapy and Sequential Enzyme-Activated Ferroptosis. Biomacromolecules 2022; 23:2007-2018. [PMID: 35404583 DOI: 10.1021/acs.biomac.2c00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phototheranostic offers a regional-focused tumor treatment upon photoirradiation. However, it is difficult to completely eradicate solid tumors using a conventional phototheranostic owing to the residual tumor cells outside the laser irradiation range. Herein, we fabricated a metallopolysaccharide-based smart nanotheranostic (Fe-dHA) via a nanoassembly-driven method, in which Fe3+ ions were coordinated to dopamine-modified biopolysaccharide hyaluronic acid (dHA). Taking advantage of the structural backbone and intrinsic dual-information-related functions of HA as well as the bi-functional Fe(III)-coordination centers, Fe-dHA can efficiently target tumor cells for phototheranostic. Additionally, it can be activated by endogenous overexpressed hyaluronidase to achieve sequential ferroptosis in tumor cells. The precise imaging and effective tumor inhibition using this metallopolysaccharide-based nanotheranostic were significantly demonstrated in vivo and in vitro. Thus, this rationally designed Fe-dHA provided a simple metallopolysaccharide strategy to develop an "all-in-one" smart nanotheranostic to synergize different therapeutic modalities for improving cancer therapy.
Collapse
Affiliation(s)
- Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yiliang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Zhilang Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Wanying Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
47
|
Zhang X, Chen X, Zhao Y. Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. NANO-MICRO LETTERS 2022; 14:95. [PMID: 35384520 PMCID: PMC8986955 DOI: 10.1007/s40820-022-00828-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 05/08/2023]
Abstract
Natural enzymes usually suffer from high production cost, ease of denaturation and inactivation, and low yield, making them difficult to be broadly applicable. As an emerging type of artificial enzyme, nanozymes that combine the characteristics of nanomaterials and enzymes are promising alternatives. On the one hand, nanozymes have high enzyme-like catalytic activities to regulate biochemical reactions. On the other hand, nanozymes also inherit the properties of nanomaterials, which can ameliorate the shortcomings of natural enzymes and serve as versatile platforms for diverse applications. In this review, various nanozymes that mimic the catalytic activity of different enzymes are introduced. The achievements of nanozymes in different cancer diagnosis and treatment technologies are summarized by highlighting the advantages of nanozymes in these applications. Finally, future research directions in this rapidly developing field are outlooked.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaokai Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
48
|
Guo W, Chen Z, Tan L, Gu D, Ren X, Fu C, Wu Q, Meng X. Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. VIEW 2022. [DOI: 10.1002/viw.20200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan P.R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| |
Collapse
|
49
|
Zhao M, Lin X, Zhou X, Zhang Y, Wu H, Liu Y. Single Probe-Based Chemical-Tongue Sensor Array for Multiple Bacterial Identification and Photothermal Sterilization in Real Time. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7706-7716. [PMID: 35109650 DOI: 10.1021/acsami.1c24042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simple and efficient identification of multiple bacteria and sterilization in real time is of considerable significance for clinical diagnostics and quality control in food. Herein, a novel chemical-tongue sensor array with 3,3',5,5'-tetramethylbenzidine (TMB) as a single probe was developed for bacterial identification and photothermal elimination. The synthesized bimetallic palladium/platinum nanoparticles (Pd/PtNPs) present excellent catalytic capability that can catalyze TMB into oxidized TMB (oxTMB) with four feature absorption peaks. Bacteria have different ability on inhibiting the reaction between TMB and Pd/PtNPs. With the absorbance intensity of oxTMB at the four feature peaks as readout, nine kinds of bacteria including two drug-resistant bacteria can be successfully distinguished via linear discriminant analysis. Remarkably, oxTMB exhibits excellent photothermal properties and can effectively kill bacteria in real time under near-infrared laser irradiation. The strategy of selecting TMB as a single probe simplifies the experimental operation and reduces the time cost. Furthermore, the developed sensing system was used to promote the wound healing process of MRSA-infected mice in vivo. The investigation provides a promising simple and efficient strategy for bacterial identification and sterilization with a universal platform, which has great potential application in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
50
|
Wang X, Wu M, Li H, Jiang J, Zhou S, Chen W, Xie C, Zhen X, Jiang X. Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104125. [PMID: 34989170 PMCID: PMC8867194 DOI: 10.1002/advs.202104125] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Indexed: 05/19/2023]
Abstract
Sonodynamic therapy (SDT) holds growing promise in deep-seated or large solid tumor treatment owing to its high tissue penetration depth ability; however, its therapeutic efficacy is often compromised due to the hypopermeable and hypoxic characteristics in the tumor milieu. Herein, a semiconducting polymer nanoparticle (SPNC) that synergistically enhances tumor penetration and alleviates tumor hypoxia is reported for sonodynamic therapy of large solid tumors. SPNC comprises a semiconducting polymer nanoparticle core as a sonodynamic converter coated with a poly (ethylene glycol) corona. An oxygen-modulating enzyme, catalase, is efficiently conjugated to the surface of nanoparticles via the coupling reaction. Superior to its counterpart SPNCs (SPNC2 (84 nm) and SPNC3 (134 nm)), SPNC with the smallest size (SPNC1 (35 nm)) can efficiently penetrate throughout the tumor interstitium to alleviate whole tumor hypoxia in a large solid tumor model. Upon ultrasound (US) irradiation, SPNC1 can remotely generate sufficient singlet oxygen to eradicate tumor cells at a deep-tissue depth. Such a single treatment of SPNC1-medicated sonodynamic therapy effectively inhibits tumor growth in a large solid tumor mouse model. Therefore, this study provides a generalized strategy to synergistically overcome both poor penetration and hypoxia of large tumors for enhanced cancer treatment.
Collapse
Affiliation(s)
- Xin Wang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Jianli Jiang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Sensen Zhou
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjing210023P. R. China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| |
Collapse
|