1
|
Jiménez-Arévalo N, Al Shuhaib JH, Pacheco RB, Marchiani D, Saad Abdelnabi MM, Frisenda R, Sbroscia M, Betti MG, Mariani C, Manzanares-Negro Y, Navarro CG, Martínez-Galera AJ, Ares JR, Ferrer IJ, Leardini F. MoS 2 Photoelectrodes for Hydrogen Production: Tuning the S-Vacancy Content in Highly Homogeneous Ultrathin Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33514-33524. [PMID: 37406352 PMCID: PMC10865293 DOI: 10.1021/acsami.3c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Tuning the electrocatalytic properties of MoS2 layers can be achieved through different paths, such as reducing their thickness, creating edges in the MoS2 flakes, and introducing S-vacancies. We combine these three approaches by growing MoS2 electrodes by using a special salt-assisted chemical vapor deposition (CVD) method. This procedure allows the growth of ultrathin MoS2 nanocrystals (1-3 layers thick and a few nanometers wide), as evidenced by atomic force microscopy and scanning tunneling microscopy. This morphology of the MoS2 layers at the nanoscale induces some specific features in the Raman and photoluminescence spectra compared to exfoliated or microcrystalline MoS2 layers. Moreover, the S-vacancy content in the layers can be tuned during CVD growth by using Ar/H2 mixtures as a carrier gas. Detailed optical microtransmittance and microreflectance spectroscopies, micro-Raman, and X-ray photoelectron spectroscopy measurements with sub-millimeter spatial resolution show that the obtained samples present an excellent homogeneity over areas in the cm2 range. The electrochemical and photoelectrochemical properties of these MoS2 layers were investigated using electrodes with relatively large areas (0.8 cm2). The prepared MoS2 cathodes show outstanding Faradaic efficiencies as well as long-term stability in acidic solutions. In addition, we demonstrate that there is an optimal number of S-vacancies to improve the electrochemical and photoelectrochemical performances of MoS2.
Collapse
Affiliation(s)
- Nuria Jiménez-Arévalo
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049, Madrid, Spain
| | - Jinan H. Al Shuhaib
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Dario Marchiani
- Dipartimento
di Física, Sapienza Università
di Roma, 00185 Roma, Italy
| | - Mahmoud M. Saad Abdelnabi
- Dipartimento
di Física, Sapienza Università
di Roma, 00185 Roma, Italy
- Physics
Department, Faculty of Science, Ain Shams
University, 11566 Cairo, Egypt
| | - Riccardo Frisenda
- Dipartimento
di Física, Sapienza Università
di Roma, 00185 Roma, Italy
| | - Marco Sbroscia
- Dipartimento
di Física, Sapienza Università
di Roma, 00185 Roma, Italy
| | | | - Carlo Mariani
- Dipartimento
di Física, Sapienza Università
di Roma, 00185 Roma, Italy
| | - Yolanda Manzanares-Negro
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Gómez Navarro
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Antonio J. Martínez-Galera
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049, Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - José Ramón Ares
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049, Madrid, Spain
| | - Isabel J. Ferrer
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049, Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Fabrice Leardini
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049, Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Qin C, Geng Y, Zhou Z, Song J, Ma S, Jia G, Jiao Z, Zhu Z, Jiang Y. Observation of carrier transfer in a vertical 0D-CsPbBr 3/2D-MoS 2 mixed-dimensional van der Waals heterojunction. OPTICS EXPRESS 2023; 31:2593-2601. [PMID: 36785269 DOI: 10.1364/oe.480651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Two-dimensional transition metal dichalcogenides with outstanding properties open up a new way to develop optoelectronic devices such as phototransistors and light-emitting diodes. Heterostructure with light-harvesting materials can produce many photogenerated carriers via charge and/or energy transfer. In this paper, the ultrafast dynamics of charge transfer in zero-dimensional CsPbBr3 quantum dot/two-dimensional MoS2 van der Waals heterostructures are investigated through femtosecond time-resolved transient absorption spectroscopy. Hole and electron transfers in the ps and fs magnitude at the interfaces between MoS2 and CsPbBr3 are observed by modulating pump wavelengths of the pump-probe configurations. Our study highlights the opportunities for realizing the exciton devices based on quantum dot/two-dimensional semiconductor heterostructures.
Collapse
|
3
|
Yamusa SA, Shaari A, Alsaif NAM, Alsalamah IM, Isah I, Rekik N. Elucidating the Structural, Electronic, Elastic, and Optical Properties of Bulk and Monolayer MoS 2 Transition-Metal Dichalcogenides: A DFT Approach. ACS OMEGA 2022; 7:45719-45731. [PMID: 36530279 PMCID: PMC9753172 DOI: 10.1021/acsomega.2c07030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Due to their outstanding properties for optoelectronic and versatile electronic applications, the atomically thin layers of transition-metal dichalcogenide (TMDC) materials have demonstrated a potential candidacy to succeed its analog silicon-based technology. Hence, the elucidation of the most important features of these materials is indispensable. In this study, we provide a theoretical elucidation of the structural, electronic, elastic, and optical characteristics of TMDCs. The study has been carried out by elucidating the material in its two particular forms, namely, bulk and two-dimensional (2D) layered (monolayer). The theoretical investigation was carried out within the framework of the density functional theory (DFT) method using first-principles calculations. The Perdew-Burke-Ernzerhof (PBE) variant of the generalized gradient approximation (GGA) scheme, as performed in the Quantum Espresso package, is used. Van der Waals density functional effects, involving the nonlocal correlation part from the rVV10 and vdW-DF2 methods, were treated to remedy the lack of the long-range vdW interaction. An illustration of the performance of both rVV10 and vdW-DF2 functionalities, with the popular PBE correlations, is elucidated. The Born stability criterion is employed to assess structural stability. The obtained results reveal an excellent stability of both systems. Furthermore, the theoretical results show that band-gap energy is in excellent agreement with experimental and theoretical data. Pugh's rule suggested that both the bulk and MoS2-2D layered systems are ductile materials. The refractive indices obtained herein are in good agreement with the available theoretical data. Moreover, the theoretical results obtained with the present approach demonstrate the ductility of both systems, namely, the bulk and the MoS2-2D layered. The results obtained herein hold promise for structural, elastic, and optical properties and pave the way for potential applications in electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Shehu Aminu Yamusa
- Department
of Physics, Faculty of Science, Universiti
Teknologi Malaysia, 81310Johor Bahru, Malaysia
- Department
of Physics, Federal College of Education
Zaria, P.M.B. 1041, 810282Zaria, Kaduna State, Nigeria
| | - Amiruddin Shaari
- Department
of Physics, Faculty of Science, Universiti
Teknologi Malaysia, 81310Johor Bahru, Malaysia
| | - Norah A. M. Alsaif
- Physics
Department, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh11564, Saudi Arabia
| | - Ibtihal M. Alsalamah
- Physics
Department, Faculty of Science, University
of Hail, Hail55211, Saudi Arabia
| | - Ibrahim Isah
- Department
of Science and Laboratory Technology, Jigawa
State Polytechnic, 720101Dutse, Nigeria
| | - Najeh Rekik
- Physics
Department, Faculty of Science, University
of Hail, Hail55211, Saudi Arabia
- Department
of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2G2, Canada
| |
Collapse
|
4
|
Canet-Albiach R, Kreĉmarová M, Bailach JB, Gualdrón-Reyes AF, Rodríguez-Romero J, Gorji S, Pashaei-Adl H, Mora-Seró I, Martínez Pastor JP, Sánchez-Royo JF, Muñoz-Matutano G. Revealing Giant Exciton Fine-Structure Splitting in Two-Dimensional Perovskites Using van der Waals Passivation. NANO LETTERS 2022; 22:7621-7627. [PMID: 36074722 DOI: 10.1021/acs.nanolett.2c02729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic-inorganic layered perovskites are currently some of the most promising 2D van der Waals materials. Low crystal quality usually broadens the exciton line width, obscuring the fine structure of the exciton in conventional photoluminescence experiments. Here, we propose a mechanical approach to reducing the effect of spectral diffusion by means of hBN capping on layered perovskites, revealing the exciton fine structure. We used a stochastic model to link the reduction of the spectral line width with the population of charge fluctuation centers present in the organic spacer. van der Waals forces between both lattices cause the partial clamping of the perovskite organic spacer molecules, and hence the amplitude of the overall spectral diffusion effect is reduced. Our work provides a low-cost solution to the problem of accessing important fine-structure excitonic state information, along with an explanation of the important carrier dynamics present in the organic spacer that affect the quality of the optical emission.
Collapse
Affiliation(s)
- Rodolfo Canet-Albiach
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Marie Kreĉmarová
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - José Bosch Bailach
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Andrés F Gualdrón-Reyes
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
- Facultad de Ciencias, Instituto de Ciencias Químicas, Isla Teja, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Jesús Rodríguez-Romero
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Coyoacán, 04510 Mexico City, Mexico
| | - Setatira Gorji
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Hamid Pashaei-Adl
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
| | - Juan P Martínez Pastor
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | | | | |
Collapse
|
5
|
Li Z, Yue Y, Peng J, Luo Z. Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Zheng SW, Wang L, Wang HY, Xu CY, Luo Y, Sun HB. Observation of quantum-confined exciton states in monolayer WS 2 quantum dots by ultrafast spectroscopy. NANOSCALE 2021; 13:17093-17100. [PMID: 34623366 DOI: 10.1039/d1nr04868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monolayer transition metal dichalcogenide quantum dots (TMDC QDs) could exhibit unique photophysical properties, because of both lateral quantum confinement effect and edge effect. However, there is little fundamental study on the quantum-confined exciton dynamics in monolayer TMDC QDs, to date. Here, by selective excitations of monolayer WS2 QDs in broadband transient absorption (TA) spectroscopy experiments, the excitation-wavelength-dependent ground state bleaching signals corresponding to the quantum-confined exciton states are directly observed. Compared to the time-resolved photophysical properties of WS2 nanosheets, the selected monolayer WS2 QDs only show one ground state bleaching peak with larger initial values for the linear polarization anisotropy of band-edge excitons, probably due to the expired spin-orbit coupling. This suggests a complete change of the band structure for monolayer WS2 QDs. In the femtosecond time-resolved circular polarization anisotropy experiments, a valley depolarization time of ∼100 fs is observed for WS2 nanosheets at room temperature, which is not observed for monolayer WS2 QDs. Our findings suggest a strong state-mixing of band-edge valley excitons responsible for the large linear polarization in monolayer WS2 QDs, which could be helpful for understanding the exciton relaxation mechanisms in colloidal monolayer TMDC QDs.
Collapse
Affiliation(s)
- Shu-Wen Zheng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Chen-Yu Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yang Luo
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| |
Collapse
|
7
|
Wang S, Huang JK, Li M, Azam A, Zu X, Qiao L, Yang J, Li S. Growth of High-Quality Monolayer Transition Metal Dichalcogenide Nanocrystals by Chemical Vapor Deposition and Their Photoluminescence and Electrocatalytic Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47962-47971. [PMID: 34591469 DOI: 10.1021/acsami.1c14136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional transition metal dichalcogenide (TMDC) nanocrystals (NCs) exhibit unique optical and electrocatalytic properties. However, the growth of uniform and high-quality NCs of monolayer TMDC remains a challenge. Until now, most of them are synthesized via a solution-based hydrothermal process or ultrasonic exfoliation method, in which the capping ligands introduced from organic solution often quench the optical and electrocatalytic properties of TMDC NCs. Moreover, it is difficult to homogeneously disperse the solution-based TMDC NCs on a substrate for device fabrication, since the dispersed NCs can easily aggregate. Here, we put forward a novel CVD method to grow closely spaced MoS2 NCs around 5 nm in lateral size. TEM and AFM characterizations demonstrate the monolayer and high-crystalline nature of MoS2 NCs. An obvious blue-shift with 130 meV in photoluminescence signals can be observed. The MoS2 NCs also show an outstanding surface-enhanced Raman scattering for organic molecules due to their localized surface plasmon and abundant edge sites and exhibit excellent electrocatalytic properties for the hydrogen-evolution reaction with a very low onset potential of ∼50 mV and Tafel slope of ∼57 mV/decade. Finally, we further demonstrate this kind of CVD method as a versatile platform for the growth of other TMDC NCs, such as WSe2 and MoSe2 NCs.
Collapse
Affiliation(s)
- Shuangyue Wang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ashraful Azam
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jack Yang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Sean Li
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Yang Q, Zhu JC, Li ZX, Chen XS, Jiang YX, Luo ZW, Wang P, Xie HL. Luminescent Liquid Crystals Based on Carbonized Polymer Dots and Their Polarized Luminescence Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26522-26532. [PMID: 34057832 DOI: 10.1021/acsami.1c08641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Traditional luminescent liquid crystals (LLCs) suffer from fluorescence quenching caused by aggregation, which greatly limits their further application. In this work, a kind of novel LLCs (named carbonized polymer dot liquid crystals (CPD-LCs)) are designed and successfully synthesized through grafting the rod-shaped liquid crystal (LC) molecules of 4'-cyano-4-(4″-bromohexyloxy) biphenyl on the surface of CPDs. The peripheral LC molecules not only increase the distance between different CPDs to prevent them from aggregating and reduce intermolecular energy resonance transfer but also make this LLC have an ordered arrangement. Thus, the obtained CPD-LCs show good LC property and excellent high luminous efficiency with an absolute photoluminescence quantum yield of 14.52% in the aggregated state. Furthermore, this kind of CPD-LC is used to fabricate linearly polarized devices. The resultant linearly polarized dichroic ratio (N) and polarization ratio (ρ) are 2.59 and 0.44, respectively. Clearly, this type of CPD-LC shows promising applications for optical devices.
Collapse
Affiliation(s)
- Qian Yang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ji-Chun Zhu
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhen-Xing Li
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiao-Shuai Chen
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yu-Xing Jiang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhi-Wang Luo
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ping Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
9
|
Do TTH, Granados del Águila A, Xing J, Liu S, Xiong Q. Direct and indirect exciton transitions in two-dimensional lead halide perovskite semiconductors. J Chem Phys 2020; 153:064705. [DOI: 10.1063/5.0012307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Thu Ha Do
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Andrés Granados del Águila
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Jun Xing
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Sheng Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d’Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Do TTH, Granados Del Águila A, Zhang D, Xing J, Liu S, Prosnikov MA, Gao W, Chang K, Christianen PCM, Xiong Q. Bright Exciton Fine-Structure in Two-Dimensional Lead Halide Perovskites. NANO LETTERS 2020; 20:5141-5148. [PMID: 32459491 DOI: 10.1021/acs.nanolett.0c01364] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The fast-growing field of atomically thin semiconductors urges a new understanding of two-dimensional excitons, which entirely determine their optical responses. Here, taking layered lead halide perovskites as an example of unconventional two-dimensional semiconductors, by means of versatile optical spectroscopy measurements, we resolve fine-structure splitting of bright excitons of up to ∼2 meV, which is among the largest values in two-dimensional semiconducting systems. The large fine-structure splitting is attributed to the strong electron-hole exchange interaction in layered perovskites, which is proven by the optical emission in high magnetic fields of up to 30 T. Furthermore, we determine the g-factors for these bright excitons as ∼+1.8. Our findings suggest layered lead halide perovskites are an ideal platform for studying exciton spin-physics in atomically thin semiconductors that will pave the way toward exciton manipulation for novel device applications.
Collapse
Affiliation(s)
- T Thu Ha Do
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Andrés Granados Del Águila
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Dong Zhang
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912 Beijing, 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xing
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Sheng Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - M A Prosnikov
- High Field Magnet Laboratory, HFML-EMFL, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371
| | - Kai Chang
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912 Beijing, 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Peter C M Christianen
- High Field Magnet Laboratory, HFML-EMFL, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|