1
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
2
|
Shtepliuk I. 2D noble metals: growth peculiarities and prospects for hydrogen evolution reaction catalysis. Phys Chem Chem Phys 2023; 25:8281-8292. [PMID: 36892012 DOI: 10.1039/d3cp00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
High-performance electrocatalysts for the hydrogen evolution reaction are of interest in the development of next-generation sustainable hydrogen production systems. Although expensive platinum-group metals have been recognized as the most effective HER catalysts, there is an ongoing requirement for the discovery of cost-effective electrode materials. This paper reveals the prospects of two-dimensional (2D) noble metals, possessing a large surface area and a high density of active sites available for hydrogen proton adsorption, as promising catalytic materials for water splitting. An overview of the synthesis techniques is given. The advantages of wet chemistry approaches for the growth of 2D metals over deposition techniques show the potential for kinetic control that is required as a precondition to prevent isotropic growth. An uncontrolled presence of surfactant-related chemicals on a 2D metal surface is however the main disadvantage of kinetically controlled growth methods, which stimulates the development of surfactant-free synthesis approaches, especially template-assisted 2D metal growth on non-metallic substrates. Recent advances in the growth of 2D metals using a graphenized SiC platform are discussed. The existing works in the field of practical application of 2D noble metals for hydrogen evolution reaction are analyzed. This paper shows the technological viability of the "2D noble metals" concept for designing electrochemical electrodes and their implementation into future hydrogen production systems, thereby providing an inspirational background for further experimental and theoretical studies.
Collapse
Affiliation(s)
- Ivan Shtepliuk
- Semiconductor Materials Division, Department of Physics, Chemistry and Biology-IFM, Linköping University, S-58183 Linköping, Sweden.
| |
Collapse
|
3
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Li Z, Zhai L, Ge Y, Huang Z, Shi Z, Liu J, Zhai W, Liang J, Zhang H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl Sci Rev 2022; 9:nwab142. [PMID: 35591920 PMCID: PMC9113131 DOI: 10.1093/nsr/nwab142] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/01/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Two-dimensional (2D) metal nanomaterials have gained ever-growing research interest owing to their fascinating physicochemical properties and promising application, especially in the field of electrocatalysis. In this review, we briefly introduce the recent advances in wet-chemical synthesis of 2D metal nanomaterials. Subsequently, the catalytic performances of 2D metal nanomaterials in a variety of electrochemical reactions are illustrated. Finally, we summarize current challenges and highlight our perspectives on preparing high-performance 2D metal electrocatalysts.
Collapse
Affiliation(s)
- Zijian Li
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639665, Singapore
| | - Wei Zhai
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinzhe Liang
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Wang H, Zhang L, Miao Z, Zhang M, Liu H, He Q, Meng J, Wen L, Ke Z, Zha Z, Lin R, Liang C. PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy via ferroptosis and ATM deficiency-triggered chemosensitization. MATERIALS HORIZONS 2021; 8:2216-2229. [PMID: 34846426 DOI: 10.1039/d0mh01992e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ferroptosis, a newly recognized form of non-apoptotic cell death, has recently been introduced for effective cancer therapy. The reported ferroptosis-inducing nanomaterials mainly consisted of metal-based components. Herein, we designed an inorganic metal-free nanoplatform, PSMA-targeted arsenic nanosheets (PMANs), which simultaneously increased glutathione (GSH) consumption, suppressed solute carrier family 7 member 11 (SLC7A11) and glutathione-dependent peroxidase 4 (GPX4) expression, and promoted the generation of reactive oxygen species (ROS) and lipid peroxides (LPO). In addition, owing to the large surface area, PMANs efficiently transported doxorubicin (DOX) to prostate cancer for synergistic therapy. Surprisingly, we found that PMANs could sensitize prostate cancer cells to DOX through downregulating the expression of ataxia telangiectasia mutated (ATM), which further augmented the GPX4 downregulation-mediated ferroptotic tumoricidal effect. Given that arsenic trioxide has been routinely and successfully used in the clinical treatment of leukemia for a long time, we anticipate that PMANs will offer a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS APPLIED BIO MATERIALS 2021; 4:1156-1177. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal nanohybrids are fast emerging functional nanomaterials with advanced structures, intriguing physicochemical properties, and a broad range of important applications in current nanoscience research. Significant efforts have been devoted toward design and develop versatile metal nanohybrid systems. Among numerous biological components, diverse proteins offer avenues for making advanced multifunctional systems with unusual properties, desired functions, and potential applications. This review discusses the rational design, properties, and applications of metal-protein nanohybrid materials fabricated from proteins and inorganic components. The construction of functional biomimetic nanohybrid materials is first briefly introduced. The properties and functions of these hybrid materials are then discussed. After that, an overview of promising application of biomimetic metal-protein nanohybrid materials is provided. Finally, the key challenges and outlooks related to this fascinating research area are also outlined.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|