1
|
Ji LJ, Yang TY, Feng GQ, Li S, Li W, Bu XH. Liquid-Phase Exfoliation of 3D Metal-Organic Frameworks into Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404756. [PMID: 39119851 DOI: 10.1002/adma.202404756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Traditionally, the acquisition of 2D materials involved the exfoliation of layered crystals. However, the anisotropic bonding arrangements within 3D crystals indicate they are mechanically reminiscent of 2D counterparts and could also be exfoliated into nanosheets. This report delineates the preparation of 2D nanosheets from six representative 3D metal-organic frameworks (MOFs) through liquid-phase exfoliation. Notably, the cleavage planes of exfoliated nanosheets align perpendicular to the direction of the minimum elastic modulus (Emin) within the pristine 3D frameworks. The findings suggest that the in-plane and out-of-plane bonding forces of the exfoliated nanosheets can be correlated with the maximum elastic modulus (Emax) and Emin of the 3D frameworks, respectively. Emax influences the ease of cleaving adjacent layers, while Emin governs the ability to resist cracking of layers. Hence, a combination of large Emax and small Emin indicates an efficient exfoliation process, and vice versa. The ratio of Emax/Emin, denoted as Amax/min, is adopted as a universal index to quantify the ease of mechanical exfoliation for 3D MOFs. This ratio, readily accessible through mechanical experiments and computation, serves as a valuable metric for selecting appropriate exfoliation methods to produce surfactant-free 2D nanosheets from various 3D materials.
Collapse
Affiliation(s)
- Li-Jun Ji
- Department of Physics and Mechanical and Electrical Engineering & Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education, Wuhan, 430074, China
| | - Tian-Yi Yang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| | - Guo-Qiang Feng
- Department of Physics and Mechanical and Electrical Engineering & Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education, Wuhan, 430074, China
| | - Sha Li
- Department of Physics and Mechanical and Electrical Engineering & Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education, Wuhan, 430074, China
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| |
Collapse
|
2
|
Jing Y, Zhou S, Liu J, Yang H, Liang J, Peng L, Li Z, Xia Y, Zhang H, Xu F, Sun L, Novoselov KS, Huang P. Unveiling the destabilization of sp 3 and sp 2 bonds in transition metal-modified borohydrides to improve reversible dehydrogenation and rehydrogenation. J Colloid Interface Sci 2024; 661:185-195. [PMID: 38301457 DOI: 10.1016/j.jcis.2024.01.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Borohydrides offer promise as potential carriers for hydrogen storage due to their high hydrogen concentration. However, the strong chemical bonding within borohydrides poses challenges for efficient hydrogen release during usage and restricts the re-hydrogenation process when attempting to regenerate the material. These high thermodynamic and kinetic barriers present obstacles in achieving reversible de-hydrogenation and re-hydrogenation of borohydrides, impeding their practical application in hydrogen storage systems. Employing density functional theory calculations, we conduct a comprehensive investigation into the influence of transition metals on both the BH4 cluster, a fundamental building block of borohydrides, and pure boron, which is formed as the end product following hydrogen release. Our research reveals correlations among the d-band center, work function, and surface energy of 3d and 4d transition metals. These correlations are directly linked to the weakening of bonding within the BH4 cluster when adsorbed on catalyst surfaces. On the other hand, we also explore how various intrinsic properties of transition metals influence the formation of boron vacancies and the hydrogen bonding process. By establishing a comprehensive correlation between the weakening of sp3 hybridization in the BH4 cluster and the sp2 hybridization in boron, we facilitate the identification and screening of optimal candidates capable of achieving reversible de-hydrogenation and re-hydrogenation in borohydrides.
Collapse
Affiliation(s)
- Yifan Jing
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Shengming Zhou
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Jiaxi Liu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China; School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Huicheng Yang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Jiaqi Liang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Leyu Peng
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Ziyuan Li
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Yongpeng Xia
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Huangzhi Zhang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Fen Xu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China
| | - Lixian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China; School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| | - Pengru Huang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, China; Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore.
| |
Collapse
|
3
|
Pham TKN, Li S, Brown JJ. Interaction energy and isosteric heat of adsorption between hydrogen and magnesium diboride. Phys Chem Chem Phys 2023; 25:4255-4265. [PMID: 36683432 DOI: 10.1039/d2cp04730f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen storage materials form a crucial research topic for future energy utilization employing hydrogen and among those of interest magnesium diboride (MgB2) has shown its prevalence. In this study, a first-principles analytical adsorption model of one hydrogen molecule in the vicinity of various magnesium diboride crystal surfaces was developed in order to obtain surface thermodynamic properties as a function of molecular and lattice properties. Henry's law constant (KH) and isosteric heat of adsorption (ΔHads) indicators of the affinity between a gaseous molecule and a solid surface are thus calculated. The results in this paper not only address questions pertaining to the first stage of hydrogen storage processes but also advance the understanding of physisorption thermodynamics of a neutral molecule (H2) coming in contact with a layered metallic-like surface (MgB2). Although the model is built from a framework of classical calculations, quantum effects are incorporated as the fractional charge of the ions on the free surfaces, which is essential for the calculation of analytic thermodynamic values that approximate calculations from other methods. To benchmark our theoretical models, periodic density functional calculations were performed to determine the interactions between H2 and different MgB2 surfaces from first-principles. By considering both the top and sublayers of MgB2 in calculating interaction energy, we have analytically and computationally calculated the interaction energies of H2 molecules and MgB2's terminated planes, and witnessed the strong dependence of interaction energies on surface charges. We have also observed a dipole flipping phenomenon which explains the discontinuity seen in the interaction energy graph of Mg(0001). Both analytical and computational results showed heat of adsorption at zero coverage varying at a very low range (<7 kJ mol-1).
Collapse
Affiliation(s)
- Thi Kieu Ngan Pham
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Hawai'i 96822, USA.
| | - Sichi Li
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Joseph J Brown
- Department of Mechanical Engineering, University of Hawai'i at Mānoa, Hawai'i 96822, USA.
| |
Collapse
|
4
|
Comanescu C. Paving the Way to the Fuel of the Future-Nanostructured Complex Hydrides. Int J Mol Sci 2022; 24:143. [PMID: 36613588 PMCID: PMC9820751 DOI: 10.3390/ijms24010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hydrides have emerged as strong candidates for energy storage applications and their study has attracted wide interest in both the academic and industry sectors. With clear advantages due to the solid-state storage of hydrogen, hydrides and in particular complex hydrides have the ability to tackle environmental pollution by offering the alternative of a clean energy source: hydrogen. However, several drawbacks have detracted this material from going mainstream, and some of these shortcomings have been addressed by nanostructuring/nanoconfinement strategies. With the enhancement of thermodynamic and/or kinetic behavior, nanosized complex hydrides (borohydrides and alanates) have recently conquered new estate in the hydrogen storage field. The current review aims to present the most recent results, many of which illustrate the feasibility of using complex hydrides for the generation of molecular hydrogen in conditions suitable for vehicular and stationary applications. Nanostructuring strategies, either in the pristine or nanoconfined state, coupled with a proper catalyst and the choice of host material can potentially yield a robust nanocomposite to reliably produce H2 in a reversible manner. The key element to tackle for current and future research efforts remains the reproducible means to store H2, which will build up towards a viable hydrogen economy goal. The most recent trends and future prospects will be presented herein.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, 405A Atomiștilor Str., 77125 Magurele, Romania;
- Faculty of Physics, University of Bucharest, 405, Atomiștilor Str., 77125 Magurele, Romania
| |
Collapse
|
5
|
Liu J, Zhang M, Tang Q, Zhao Y, Zhang J, Zhu Y, Liu Y, Hu X, Li L. Supra Hydrolytic Catalysis of Ni 3 Fe/rGO for Hydrogen Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201428. [PMID: 35522021 PMCID: PMC9313488 DOI: 10.1002/advs.202201428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Light metal hydrolysis for hydrogen supply is well suited for portable hydrogen fuel cells. The addition of catalysts can substantially aid Mg hydrolysis. However, there is a lack of clear catalytic mechanism to guide the design of efficient catalysts. In this work, the essential role of nanosized catalyst (Ni3 Fe/rGO) in activating micro-sized Mg with ultra-rapid hydrolysis process is investigated for the first time. Here, an unprecedented content of 0.2 wt% Ni3 Fe/rGO added Mg can release 812.4 mL g-1 hydrogen in just 60 s at 30 °C. Notably, an impressive performance with a hydrogen yield of 826.4 mL g-1 at 0 °C in only 30 s is achieved by the Mg-2 wt% Ni3 Fe/rGO, extending the temperature range for practical applications of hydrolysis. Moreover, the four catalysts (Ni3 Fe/rGO, Ni3 Fe, Ni/rGO, Fe/rGO) are designed to reveal the influence of composition, particle size, and dispersion on catalytic behavior. Theoretical studies corroborate that the addition of Ni3 Fe/rGO accelerates the electron transfer and coupling processes and further provides a lower energy barrier diffusion path for hydrogen. Thus, a mechanism concerning the catalyst as migration relay is proposed. This work offers guidelines designing high-performance catalysts especially for activating the hydrolysis of micro-sized light weight metals.
Collapse
Affiliation(s)
- Jiangchuan Liu
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Mengchen Zhang
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Qinke Tang
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Yingyan Zhao
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Jiguang Zhang
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Yunfeng Zhu
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Yana Liu
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Xiaohui Hu
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| | - Liquan Li
- College of Materials Science and EngineeringJiangsu Collaborative Innovation Centre for Advanced Inorganic Function CompositesNanjing Tech University30 South Puzhu RoadNanjing211816P. R. China
| |
Collapse
|
6
|
Comanescu C. Recent Development in Nanoconfined Hydrides for Energy Storage. Int J Mol Sci 2022; 23:7111. [PMID: 35806115 PMCID: PMC9267122 DOI: 10.3390/ijms23137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers' attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Magurele, Romania
| |
Collapse
|
7
|
Ray KG, Klebanoff LE, Stavila V, Kang S, Wan LF, Li S, Heo TW, Allendorf MD, Lee JRI, Baker AA, Wood BC. Understanding Hydrogenation Chemistry at MgB 2 Reactive Edges from Ab Initio Molecular Dynamics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20430-20442. [PMID: 35319201 DOI: 10.1021/acsami.1c23524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid-state hydrogen storage materials often operate via transient, multistep chemical reactions at complex interfaces that are difficult to capture. Here, we use direct ab initio molecular dynamics simulations at accelerated temperatures and hydrogen pressures to probe the hydrogenation chemistry of the candidate material MgB2 without a priori assumption of reaction pathways. Focusing on highly reactive (101̅0) edge planes where initial hydrogen attack is likely to occur, we track mechanistic steps toward the formation of hydrogen-saturated BH4- units and key chemical intermediates, involving H2 dissociation, generation of functionalities and molecular complexes containing BH2 and BH3 motifs, and B-B bond breaking. The genesis of higher-order boron clustering is also observed. Different charge states and chemical environments at the B-rich and Mg-rich edge planes are found to produce different chemical pathways and preferred speciation, with implications for overall hydrogenation kinetics. The reaction processes rely on B-H bond polarization and fluctuations between ionic and covalent character, which are critically enabled by the presence of Mg2+ cations in the nearby interphase region. Our results provide guidance for devising kinetic improvement strategies for MgB2-based hydrogen storage materials, while also providing a template for exploring chemical pathways in other solid-state energy storage reactions.
Collapse
Affiliation(s)
- Keith G Ray
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | | - Vitalie Stavila
- Sandia National Laboratories, Livermore, California 94551, United States
| | - ShinYoung Kang
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Liwen F Wan
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sichi Li
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tae Wook Heo
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mark D Allendorf
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Jonathan R I Lee
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Alexander A Baker
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Brandon C Wood
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
8
|
An Overview of the Recent Advances of Additive-Improved Mg(BH4)2 for Solid-State Hydrogen Storage Material. ENERGIES 2022. [DOI: 10.3390/en15030862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, hydrogen (H2) has emerged as a superior energy carrier that has the potential to replace fossil fuel. However, storing H2 under safe and operable conditions is still a challenging process due to the current commercial method, i.e., H2 storage in a pressurised and liquified state, which requires extremely high pressure and extremely low temperature. To solve this problem, research on solid-state H2 storage materials is being actively conducted. Among the solid-state H2 storage materials, borohydride is a potential candidate for H2 storage owing to its high gravimetric capacity (majority borohydride materials release >10 wt% of H2). Mg(BH4)2, which is included in the borohydride family, shows promise as a good H2 storage material owing to its high gravimetric capacity (14.9 wt%). However, its practical application is hindered by high thermal decomposition temperature (above 300 °C), slow sorption kinetics and poor reversibility. Currently, the general research on the use of additives to enhance the H2 storage performance of Mg(BH4)2 is still under investigation. This article reviews the latest research on additive-enhanced Mg(BH4)2 and its impact on the H2 storage performance. The future prospect and challenges in the development of additive-enhanced Mg(BH4)2 are also discussed in this review paper. To the best of our knowledge, this is the first systematic review paper that focuses on the additive-enhanced Mg(BH4)2 for solid-state H2 storage.
Collapse
|
9
|
Dun C, Jeong S, Liu YS, Leick N, Mattox TM, Guo J, Lee JW, Gennett T, Stavila V, Urban JJ. Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101989. [PMID: 34569721 DOI: 10.1002/smll.202101989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core-shell structure of porous Mg(BH4 )2 -based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet-chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4 )2 . A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ-phase Mg(BH4 )2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol-1 lower than that of Mg(BH4 )2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg- and B- elements) from oxidizing, which is a necessary condition to reversibility.
Collapse
Affiliation(s)
- Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sohee Jeong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Noemi Leick
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Tracy M Mattox
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joo-Won Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Thomas Gennett
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Chemistry Department, Colorado School of Mines, 1012 14th Street, Golden, CO, 80401, USA
| | | | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Cho Y, Li S, Snider JL, Marple MAT, Strange NA, Sugar JD, El Gabaly F, Schneemann A, Kang S, Kang MH, Park H, Park J, Wan LF, Mason HE, Allendorf MD, Wood BC, Cho ES, Stavila V. Reversing the Irreversible: Thermodynamic Stabilization of LiAlH 4 Nanoconfined Within a Nitrogen-Doped Carbon Host. ACS NANO 2021; 15:10163-10174. [PMID: 34029480 DOI: 10.1021/acsnano.1c02079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH4 as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH4@NCMK-3 material releases H2 at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual Li3AlH6 intermediate observed in bulk. Moreover, >80% of LiAlH4 can be regenerated under 100 MPa H2, a feat previously thought to be impossible. Nitrogen sites are critical to these improvements, as no reversibility is observed with undoped CMK-3. Density functional theory predicts a drastically reduced Al-H bond dissociation energy and supports the observed change in the reaction pathway. The calculations also provide a rationale for the solid-state reversibility, which derives from the combined effects of nanoconfinement, Li adatom formation, and charge redistribution between the metal hydride and the host.
Collapse
Affiliation(s)
- YongJun Cho
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sichi Li
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jonathan L Snider
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Maxwell A T Marple
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Nicholas A Strange
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Joshua D Sugar
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Farid El Gabaly
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Andreas Schneemann
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ho Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hayoung Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Liwen F Wan
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Harris E Mason
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Mark D Allendorf
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Brandon C Wood
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Eun Seon Cho
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Vitalie Stavila
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
11
|
Wu R, Zhang X, Liu Y, Zhang L, Hu J, Gao M, Pan H. A Unique Double-Layered Carbon Nanobowl-Confined Lithium Borohydride for Highly Reversible Hydrogen Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001963. [PMID: 32613757 DOI: 10.1002/smll.202001963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Poor reversibility and high desorption temperature restricts the practical use of lithium borohydride (LiBH4 ) as an advanced hydrogen store. Herein, a LiBH4 composite confined in unique double-layered carbon nanobowls prepared by a facile melt infiltration process is demonstrated, thanks to powerful capillary effect under 100 bar of H2 pressure. The gradual formation of double-layered carbon nanobowls is witnessed by transmission electron microscopy (TEM) observation. Benefiting from the nanoconfinement effect and catalytic function of carbon, this composite releases hydrogen from 225 °C and peaks at 353 °C, with a hydrogen release amount up to 10.9 wt%. The peak temperature of dehydriding is lowered by 112 °C compared with bulk LiBH4 . More importantly, the composite readily desorbs and absorbs ≈8.5 wt% of H2 at 300 °C and 100 bar H2 , showing a significant reversibility of hydrogen storage. Such a high reversible capacity has not ever been observed under the identical conditions. The usable volumetric energy density reaches as high as 82.4 g L-1 with considerable dehydriding kinetics. The findings provide insights in the design and development of nanosized complex hydrides for on-board applications.
Collapse
Affiliation(s)
- Ruyan Wu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yongfeng Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lingchao Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianjiang Hu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Mingxia Gao
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongge Pan
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Wang Y, Chen X, Zhang H, Xia G, Sun D, Yu X. Heterostructures Built in Metal Hydrides for Advanced Hydrogen Storage Reversibility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002647. [PMID: 32588944 DOI: 10.1002/adma.202002647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen storage is a vital technology for developing on-board hydrogen fuel cells. While Mg(BH4 )2 is widely regarded as a promising hydrogen storage material owing to its extremely high gravimetric and volumetric capacity, its poor reversibility poses a major bottleneck inhibiting its practical applications. Herein, a facile strategy to effectively improve the reversible hydrogen storage performance of Mg(BH4 )2 via building heterostructures uniformly inside MgH2 nanoparticles is reported. The in situ reaction between MgH2 nanoparticles and B2 H6 not only forms homogeneous heterostructures with controllable particle size but also simultaneously decreases the particle size of the MgH2 nanoparticles inside, which effectively reduces the kinetic barrier that inhibits the reversible hydrogen storage in both Mg(BH4 )2 and MgH2 . More importantly, density functional theory coupled with ab initio molecular dynamics calculations clearly demonstrates that MgH2 in this heterostructure can act as a hydrogen pump, which drastically changes the enthalpy for the initial formation of BH bonds by breaking stable BB bonds from endothermic to exothermic and hence thermodynamically improves the reversibility of Mg(BH4 )2 . It is believed that building heterostructures provides a window of opportunity for discovering high-performance hydrogen storage materials for on-board applications.
Collapse
Affiliation(s)
- Yanran Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Xiaowei Chen
- Department of Physics, Jimei University, Xiamen, 361021, China
| | - Hongyu Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|