1
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
2
|
Qiao Z, Wang X, Zhai Y, Yu R, Fang Z, Chen G. In Situ Real-Time Observation of Formation and Self-Assembly of Perovskite Nanocrystals at High Temperature. NANO LETTERS 2023. [PMID: 37982537 DOI: 10.1021/acs.nanolett.3c02908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
All-inorganic cesium lead halide perovskite nanocrystals (NCs) have received much attention due to their outstanding optical and electronic properties, but the underlying growth mechanism remains elusive due to their rapid formation process. Here, we report an in situ real-time study of the growth of Cs4PbBr6 NCs under practical synthesis conditions in a custom-made reactor. Through the synchrotron-based small-angle X-ray scattering technique, we find that the formation of Cs4PbBr6 NCs is accomplished in three steps: the fast nucleation process accompanied by self-focusing growth, the subsequent diffusion-limited Ostwald ripening, and the self-assembly of NCs into the face-centered cubic (fcc) superlattices at high temperature and the termination of growth. The simultaneously collected wide-angle X-ray scattering signals further corroborate the three-step growth model. The influence of superlattice formation is also elucidated, which improves the uniformity of the final NCs.
Collapse
Affiliation(s)
- Zhi Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yufeng Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhu Fang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Wen H, Zhang H, Peng R, Liu C, Liu S, Liu F, Xie H, Liu Z. 3D Strain Measurement of Heterostructures Using the Scanning Transmission Electron Microscopy Moiré Depth Sectioning Method. SMALL METHODS 2023; 7:e2300107. [PMID: 37300326 DOI: 10.1002/smtd.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/03/2023] [Indexed: 06/12/2023]
Abstract
The mechanical properties of micro- and nanoscale materials directly determine the reliability of heterostructures, microstructures, and microdevices. Therefore, an accurate evaluation of the 3D strain field at the nanoscale is important. In this study, a scanning transmission electron microscopy (STEM) moiré depth sectioning method is proposed. By optimizing the scanning parameters of electron probes at different depths of the material, the sequence STEM moiré fringes (STEM-MFs) with a large field of view, which can be hundreds of nanometers obtained. Then, the 3D STEM moiré information constructed. To some extent, multi-scale 3D strain field measurements from nanometer to the submicrometer scale actualized. The 3D strain field near the heterostructure interface and single dislocation accurately measured by the developed method.
Collapse
Affiliation(s)
- Huihui Wen
- School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongye Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
- School of Technology, Beijing Forestry University, Beijing, 100083, China
| | - Runlai Peng
- School of Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Shuman Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Fengqi Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Huimin Xie
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Zhanwei Liu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Levy S, Be'er O, Veber N, Monachon C, Bekenstein Y. Tuning the Colloidal Softness of CsPbBr 3 Nanocrystals for Homogeneous Superlattices. NANO LETTERS 2023; 23:7129-7134. [PMID: 37470186 DOI: 10.1021/acs.nanolett.3c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Perovskite nanocrystal superlattices (NC SLs), made from millions of ordered crystals, support collective optoelectronic phenomena. Coupled NC emitters are highly sensitive to the structural and spectral inhomogeneities of the NC ensemble. Free electrons in scanning electron microscopy (SEM) are used to probe the cathodoluminescence (CL) properties of CsPbBr3 SLs with a ∼20 nm spatial resolution. Correlated CL-SEM measurements allow for simultaneous characterization of structural and spectral heterogeneities of the SLs. Hyperspectral CL mapping shows multipole emissive domains within a single SL. Consistently, the edges of the SLs are blue-shifted relative to the central domain by up to 65 meV. We discover a relation between NC building block colloidal softness and the extent of the CL shift. Residual uniaxial compressive strains accompanying SL formation are contributors to these emission shifts. Therefore, precise control over the colloidal softness of the NC building blocks is critical for SL engineering.
Collapse
Affiliation(s)
- Shai Levy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Orr Be'er
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Noam Veber
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Christian Monachon
- Attolight SA, EPFL Innovation Park, Building D, 1015 Lausanne, Switzerland
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
5
|
Egea-Benavente D, Díaz-Ufano C, Gallo-Cordova Á, Palomares FJ, Cuya Huaman JL, Barber DF, Morales MDP, Balachandran J. Cubic Mesocrystal Magnetic Iron Oxide Nanoparticle Formation by Oriented Aggregation of Cubes in Organic Media: A Rational Design to Enhance the Magnetic Hyperthermia Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390112 DOI: 10.1021/acsami.3c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Magnetic iron oxide mesocrystals have been reported to exhibit collective magnetic properties and consequently enhanced heating capabilities under alternating magnetic fields. However, there is no universal mechanism to fully explain the formation pathway that determines the particle diameter, crystal size, and shape of these mesocrystals and their evolution along with the reaction. In this work, we have analyzed the formation of cubic magnetic iron oxide mesocrystals by thermal decomposition in organic media. We have observed that a nonclassical pathway leads to mesocrystals via the attachment of crystallographically aligned primary cubic particles and grows through sintering with time to achieve a sizable single crystal. In this case, the solvent 1-octadecene and the surfactant agent biphenyl-4-carboxylic acid seem to be the key parameters to form cubic mesocrystals as intermediates of the reaction in the presence of oleic acid. Interestingly, the magnetic properties and hyperthermia efficiency of the aqueous suspensions strongly depend on the degree of aggregation of the cores forming the final particle. The highest saturation magnetization and specific absorption rate values were found for the less aggregated mesocrystals. Thus, these cubic magnetic iron oxide mesocrystals stand out as an excellent alternative for biomedical applications with their enhanced magnetic properties.
Collapse
Affiliation(s)
- David Egea-Benavente
- Department of Immunology, and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Díaz-Ufano
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Álvaro Gallo-Cordova
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Francisco Javier Palomares
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Jhon Lehman Cuya Huaman
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki aza aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Domingo F Barber
- Department of Immunology, and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - María Del Puerto Morales
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Jeyadevan Balachandran
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki aza aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
6
|
Göppert AK, González-Rubio G, Schnitzlein S, Cölfen H. A Nanoparticle-Based Model System for the Study of Heterogeneous Nucleation Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3580-3588. [PMID: 36862982 PMCID: PMC10018769 DOI: 10.1021/acs.langmuir.2c03034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Heterogeneous nucleation processes are involved in many important phenomena in nature, including devastating human diseases caused by amyloid structures or the harmful frost formed on fruits. However, understanding them is challenging due to the difficulties of characterizing the initial stages of the process occurring at the interface between the nucleation medium and the substrate surfaces. This work implements a model system based on gold nanoparticles to investigate the effect of particle surface chemistry and substrate properties on heterogeneous nucleation processes. Using widely available techniques such as UV-vis-NIR spectroscopy and light microscopy, gold nanoparticle-based superstructure formation was studied in the presence of substrates with different hydrophilicity and electrostatic charges. The results were evaluated on grounds of classical nucleation theory (CNT) to reveal kinetic and thermodynamic contributions of the heterogeneous nucleation process. In contrast to nucleation from ions, the kinetic contributions toward nucleation turned out to be larger than the thermodynamic contributions for the nanoparticle building blocks. Electrostatic interactions between substrates and nanoparticles with opposite charges were crucial to enhancing the nucleation rates and decreasing the nucleation barrier of superstructure formation. Thereby, the described strategy is demonstrated advantageous for characterizing physicochemical aspects of heterogeneous nucleation processes in a simple and accessible manner, which could be potentially explored to study more complex nucleation phenomena.
Collapse
|
7
|
Di A, Xu J, Zinn T, Sztucki M, Deng W, Ashok A, Lian C, Bergström L. Tunable Ordered Nanostructured Phases by Co-assembly of Amphiphilic Polyoxometalates and Pluronic Block Copolymers. NANO LETTERS 2023; 23:1645-1651. [PMID: 36795963 PMCID: PMC9999449 DOI: 10.1021/acs.nanolett.2c03068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The assembly of polyoxometalate (POM) metal-oxygen clusters into ordered nanostructures is attracting a growing interest for catalytic and sensing applications. However, assembly of ordered nanostructured POMs from solution can be impaired by aggregation, and the structural diversity is poorly understood. Here, we present a time-resolved small-angle X-ray scattering (SAXS) study of the co-assembly in aqueous solutions of amphiphilic organo-functionalized Wells-Dawson-type POMs with a Pluronic block copolymer over a wide concentration range in levitating droplets. SAXS analysis revealed the formation and subsequent transformation with increasing concentration of large vesicles, a lamellar phase, a mixture of two cubic phases that evolved into one dominating cubic phase, and eventually a hexagonal phase formed at concentrations above 110 mM. The structural versatility of co-assembled amphiphilic POMs and Pluronic block copolymers was supported by dissipative particle dynamics simulations and cryo-TEM.
Collapse
Affiliation(s)
- Andi Di
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Jipeng Xu
- School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Thomas Zinn
- ESRF,
The European Synchrotron, 71 Avenue des Martyrs, CS40220,38043 Grenoble Cedex 9, France
| | - Michael Sztucki
- ESRF,
The European Synchrotron, 71 Avenue des Martyrs, CS40220,38043 Grenoble Cedex 9, France
| | - Wentao Deng
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| | - Anumol Ashok
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Cheng Lian
- School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lennart Bergström
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
8
|
Wang Y, Liu J, Wang A, Gao S, Li Z, Li J, Yan S, Cheng S, Song Z, Zhang Y, Dong J, Cao J, Wang F, Huang W, Qin T. Heterostructural Nanosheets Consisting of Polycyclic Aromatic Hydrocarbon Shields and Layered Perovskite Cores for Optical Image Encryption. J Phys Chem Lett 2023; 14:2047-2055. [PMID: 36795606 DOI: 10.1021/acs.jpclett.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical image encryption technology, in which the emission on/off can be controlled by using specially appointed wavelengths, is useful in information storage and protection. Herein, we report a family of sandwiched heterostructural nanosheets, consisting of three-layered (n = 3) perovskite (PSK) frameworks in center with two different polycyclic aromatic hydrocarbons [triphenylene (Tp) and pyrene (Py)] in periphery. Both heterostructural nanosheets (Tp-PSK and Py-PSK) exhibit blue emissions under UVA-I irradiation; however, different photoluminescent properties are observed under UVA-II. A bright emission of Tp-PSK is attributed to the fluorescence resonance energy transfer (FRET) from Tp-shield to PSK-core, whereas the observed photoquenching phenomenon in Py-PSK is due to the competitive absorption between Py-shield and PSK-core. We exploited the unique photophysical features (on/off emission) of the two nanosheets in a narrow UV window (320-340 nm) for optical image encrypting.
Collapse
Affiliation(s)
- Yanchen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiaxin Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Aifei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Song Gao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zihao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Junjie Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suhao Yan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suwen Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zhicheng Song
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Yupeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jingjin Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiupeng Cao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| |
Collapse
|
9
|
Zhang J, Li X, Liu Y, Feng J, Zhao J, Geng Y, Gao H, Wang T, Yang W, Jiang L, Wu Y. Confined Assembly of Colloidal Nanorod Superstructures by Locally Controlling Free-Volume Entropy in Nonequilibrium Fluids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202119. [PMID: 35522854 DOI: 10.1002/adma.202202119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Long-range-ordered structures of nanoparticles with controllable orientation have advantages in applications toward sensors, photoelectric conversion, and field-effect transistors. The assembly process of nanorods in colloidal systems undergoes a nonequilibrium process from dispersion to aggregation. A variety of assembly methods such as solvent volatilization, electromagnetic field induction, and photoinduction are restricted to suppress local perturbations during the nonequilibrium concentration of nanoparticles, which are adverse to controlling the orientation and order of assembled structures. Here, a confined assembly method is reported by locally controlling free-volume entropy in nonequilibrium fluids to fabricate microstructure arrays based on colloidal nanorods with controllable orientation and long-range order. The unique fluid dynamics of the liquid bridge is utilized to form a local region, where the free volume entropy reduction triggers assembly near the three-phase contact line (TPCL), allowing nanorods to assemble in 2D closest packing parallel to the TPCL for the maximum Gibbs free energy reduction. By manipulating the orientation of liquid flow, microstructures are assembled with programmable geometry, which sustains polarized photoluminescence and polarization-dependent photodetection. This confined assembly method opens up perspectives on assemblies of nanomaterials with controllable orientation and long-range order as a platform for multifunctional integrated devices.
Collapse
Affiliation(s)
- Jingyuan Zhang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao Li
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiangang Feng
- Department of Chemical and Biomolecular Sciences, National University of Singapore, Singapore, 117585, Singapore
| | - Jinjin Zhao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yue Geng
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hanfei Gao
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Tie Wang
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Lei Jiang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| |
Collapse
|
10
|
Jenewein C, Schupp SM, Ni B, Schmidt-Mende L, Cölfen H. Tuning the Electronic Properties of Mesocrystals. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Christian Jenewein
- Department of Chemistry University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Stefan M. Schupp
- Department of Physics University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Bing Ni
- Department of Chemistry University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Lukas Schmidt-Mende
- Department of Physics University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Helmut Cölfen
- Department of Chemistry University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| |
Collapse
|
11
|
Lv ZP, Kapuscinski M, Járvás G, Yu S, Bergström L. Time-Resolved SAXS Study of Polarity- and Surfactant-Controlled Superlattice Transformations of Oleate-Capped Nanocubes During Solvent Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106768. [PMID: 35523733 DOI: 10.1002/smll.202106768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Structural transformations and lattice expansion of oleate-capped iron oxide nanocube superlattices are studied by time-resolved small-angle X-ray scattering (SAXS) during solvent removal. The combination of conductor-like screening model for real solvents (COSMO-RS) theory with computational fluid dynamics (CFD) modeling provides information on the solvent composition and polarity during droplet evaporation. Evaporation-driven poor-solvent enrichment in the presence of free oleic acid results in the formation of superlattices with a tilted face-centered cubic (fcc) structure when the polarity reaches its maximum. The tilted fcc lattice expands subsequently during the removal of the poor solvent and eventually transforms to a regular simple cubic (sc) lattice during the final evaporation stage when only free oleic acid remains. Comparative studies show that both the increase in polarity as the poor solvent is enriched and the presence of a sufficient amount of added oleic acid is required to promote the formation of structurally diverse superlattices with large domain sizes.
Collapse
Affiliation(s)
- Zhong-Peng Lv
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Martin Kapuscinski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Materials Science and Engineering, Uppsala University, Uppsala, SE-75103, Sweden
| | - Gábor Járvás
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, HU-8200, Hungary
| | - Shun Yu
- Department of Materials and Surface Design, RISE Research Institute of Sweden, Lund, SE-22370, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
12
|
Lapkin D, Kirsch C, Hiller J, Andrienko D, Assalauova D, Braun K, Carnis J, Kim YY, Mandal M, Maier A, Meixner AJ, Mukharamova N, Scheele M, Schreiber F, Sprung M, Wahl J, Westendorf S, Zaluzhnyy IA, Vartanyants IA. Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals. Nat Commun 2022; 13:892. [PMID: 35173165 PMCID: PMC8850480 DOI: 10.1038/s41467-022-28486-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 12/01/2022] Open
Abstract
We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters.
Collapse
Affiliation(s)
- Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Christopher Kirsch
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jonas Hiller
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Kai Braun
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jerome Carnis
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Mukunda Mandal
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Andre Maier
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Alfred J Meixner
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | | | - Marcus Scheele
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| | - Frank Schreiber
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Jan Wahl
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Sophia Westendorf
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Ivan A Zaluzhnyy
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia.
| |
Collapse
|
13
|
Jenewein C, Avaro J, Appel C, Liebi M, Cölfen H. Binäre 3D‐Mesokristalle aus anisotropen Nanopartikeln. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christian Jenewein
- Fachbereich Chemie Physikalische Chemie Universität Konstanz Universitätsstraße 10 Konstanz Deutschland
| | - Jonathan Avaro
- Zentrum für Röntgenanalytik Empa – Eidgenössische Forschungsanstalt für Materialwissenschaft und Technologie Lerchenfeldstrasse 5 9014 St. Gallen Schweiz
| | | | - Marianne Liebi
- Zentrum für Röntgenanalytik Empa – Eidgenössische Forschungsanstalt für Materialwissenschaft und Technologie Lerchenfeldstrasse 5 9014 St. Gallen Schweiz
- Fachbereich Physik Chalmers Universität für Technologie 41296 Göteborg Schweden
| | - Helmut Cölfen
- Fachbereich Chemie Physikalische Chemie Universität Konstanz Universitätsstraße 10 Konstanz Deutschland
| |
Collapse
|
14
|
Jenewein C, Avaro J, Appel C, Liebi M, Cölfen H. 3D Binary Mesocrystals from Anisotropic Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202112461. [PMID: 34669241 PMCID: PMC9298807 DOI: 10.1002/anie.202112461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Indexed: 11/20/2022]
Abstract
Binary mesocrystals offer the combination of nanocrystal properties in an ordered superstructure. Here, we demonstrate the simultaneous self-assembly of platinum and iron oxide nanocubes into micrometer-sized 3D mesocrystals using the gas-phase diffusion technique. By the addition of minor amounts of a secondary particle type tailored to nearly identical size, shape and surface chemistry, we were able to promote a random incorporation of foreign particles into a self-assembling host lattice. The random distribution of the binary particle types on the surface and within its bulk has been visualized using advanced transmission and scanning electron microscopy techniques. The 20-40 μm sized binary mesocrystals have been further characterized through wide and small angle scattering techniques to reveal a long-range ordering on the atomic scale throughout the crystal while showing clear evidence that the material consists of individual building blocks. Through careful adjustments of the crystallization parameters, we could further obtain a reverse superstructure, where incorporated particles and host lattice switch roles.
Collapse
Affiliation(s)
- Christian Jenewein
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 10KonstanzGermany
| | - Jonathan Avaro
- Center for X-ray AnalyticsEmpa—Swiss Federal Laboratories for Materials Science and TechnologyLerchenfeldstrasse 59014St. GallenSwitzerland
| | | | - Marianne Liebi
- Center for X-ray AnalyticsEmpa—Swiss Federal Laboratories for Materials Science and TechnologyLerchenfeldstrasse 59014St. GallenSwitzerland
- Department of PhysicsChalmers University of Technology41296GothenburgSweden
| | - Helmut Cölfen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 10KonstanzGermany
| |
Collapse
|
15
|
Korath Shivan S, Maier A, Scheele M. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chem Commun (Camb) 2022; 58:6998-7017. [DOI: 10.1039/d2cc00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a comprehensive account of the optical, electrical and mechanical properties that result from the self-assembly of colloidal nanocrystals or atomically precise nanoclusters into crystalline arrays with long-range order....
Collapse
|
16
|
Primc D, Indrizzi L, Tervoort E, Xie F, Niederberger M. Synthesis of Cu 3N and Cu 3N-Cu 2O multicomponent mesocrystals: non-classical crystallization and nanoscale Kirkendall effect. NANOSCALE 2021; 13:17521-17529. [PMID: 34652362 DOI: 10.1039/d1nr05767g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mesocrystals are superstructures of crystallographically aligned nanoparticles and are a rapidly emerging class of crystalline materials displaying sophisticated morphologies and properties, beyond those originating from size and shape of nanoparticles alone. This study reports the first synthesis of Cu3N mesocrystals employing structure-directing agents with a subtle tuning of the reaction parameters. Detailed structural characterizations carried out with a combination of transmission electron microscopy techniques (HRTEM, HAADF-STEM-EXDS) reveal that Cu3N mesocrystals form by non-classical crystallization, and variations in their sizes and morphologies are traced back to distinct attachment scenarios of corresponding mesocrystal subunits. In the presence of oleylamine, the mesocrystal subunits in the early reaction stages prealign in a crystallographic fashion and afterwards grow into the final mesocrystals, while in the presence of hexadecylamine the subunits come into contact through misaligned attachment, and subsequently, to some degree, realign in crystallographic register. Upon prolonged heating both types of mesocrystals undergo chemical conversion processes resulting in structural and morphological changes. A two-step mechanism of chemical conversion is proposed, involving Cu3N decomposition and anion exchange driven by the nanoscale Kirkendall effect, resulting first in multicomponent/heterostructured Cu3N-Cu2O mesocrystals, which subsequently convert into Cu2O nanocages. It is anticipated that combining nanostructured Cu3N and Cu2O in a mesocrystalline and hollow morphology will provide a platform to expand their application potential.
Collapse
Affiliation(s)
- Darinka Primc
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK
| | - Luca Indrizzi
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Elena Tervoort
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Jenewein C, Cölfen H. Mesocrystals from Platinum Nanocubes. NANOMATERIALS 2021; 11:nano11082122. [PMID: 34443951 PMCID: PMC8398057 DOI: 10.3390/nano11082122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
Platinum nanoparticles are widely known for their numerous electrochemical and catalytic applications. Enhanced or novel properties that may arise when ordering such particles in a highly defined manner, however, are still subject to ongoing research, as superstructure formation on the mesoscale is still a major challenge to be overcome. In this work, we therefore established a reproducible method to fabricate micrometer-sized superstructures from platinum nanocubes. Through small-angle X-ray scattering and electron diffraction methods we demonstrate that the obtained superstructures have a high degree of ordering up to the atomic scale and, therefore, fulfill all criteria of a mesocrystal. By changing the solvent and stabilizer in which the platinum nanocubes were dispersed, we were able to control the resulting crystal habit of the mesocrystals. Aside from mesocrystal fabrication, this method can be further utilized to purify nanoparticle dispersions by recrystallization with respect to narrowing down the particle size distribution and removing contaminations.
Collapse
|
18
|
Grote L, Zito CA, Frank K, Dippel AC, Reisbeck P, Pitala K, Kvashnina KO, Bauters S, Detlefs B, Ivashko O, Pandit P, Rebber M, Harouna-Mayer SY, Nickel B, Koziej D. X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies. Nat Commun 2021; 12:4429. [PMID: 34285227 PMCID: PMC8292528 DOI: 10.1038/s41467-021-24557-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
The key to fabricating complex, hierarchical materials is the control of chemical reactions at various length scales. To this end, the classical model of nucleation and growth fails to provide sufficient information. Here, we illustrate how modern X-ray spectroscopic and scattering in situ studies bridge the molecular- and macro- length scales for assemblies of polyhedrally shaped CoO nanocrystals. Utilizing high energy-resolution fluorescence-detected X-ray absorption spectroscopy, we directly access the molecular level of the nanomaterial synthesis. We reveal that initially Co(acac)3 rapidly reduces to square-planar Co(acac)2 and coordinates to two solvent molecules. Combining atomic pair distribution functions and small-angle X-ray scattering we observe that, unlike a classical nucleation and growth mechanism, nuclei as small as 2 nm assemble into superstructures of 20 nm. The individual nanoparticles and assemblies continue growing at a similar pace. The final spherical assemblies are smaller than 100 nm, while the nanoparticles reach a size of 6 nm and adopt various polyhedral, edgy shapes. Our work thus provides a comprehensive perspective on the emergence of nano-assemblies in solution.
Collapse
Affiliation(s)
- Lukas Grote
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Cecilia A Zito
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- São Paulo State University UNESP, São José do Rio Preto, Brazil
| | - Kilian Frank
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | | | - Patrick Reisbeck
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | - Krzysztof Pitala
- AGH, University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- Academic Center for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Kristina O Kvashnina
- The Rossendorf Beamline at the European Synchrotron Radiation Facility ESRF, Grenoble, France
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden, Germany
| | - Stephen Bauters
- The Rossendorf Beamline at the European Synchrotron Radiation Facility ESRF, Grenoble, France
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden, Germany
| | - Blanka Detlefs
- European Synchrotron Radiation Facility ESRF, Grenoble, France
| | - Oleh Ivashko
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | - Matthias Rebber
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Sani Y Harouna-Mayer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Bert Nickel
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
19
|
Carnis J, Kirner F, Lapkin D, Sturm S, Kim YY, Baburin IA, Khubbutdinov R, Ignatenko A, Iashina E, Mistonov A, Steegemans T, Wieck T, Gemming T, Lubk A, Lazarev S, Sprung M, Vartanyants IA, Sturm EV. Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging. NANOSCALE 2021; 13:10425-10435. [PMID: 34028473 DOI: 10.1039/d1nr01806j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, "multidomain" structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.
Collapse
Affiliation(s)
- Jerome Carnis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Felizitas Kirner
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Sebastian Sturm
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | | | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Alexandr Ignatenko
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ekaterina Iashina
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | - Alexander Mistonov
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | | | - Thomas Wieck
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Axel Lubk
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050 Tomsk, Russia
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Elena V Sturm
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
20
|
Munier P, Di A, Hadi SE, Kapuscinski M, Segad M, Bergström L. Assembly of cellulose nanocrystals and clay nanoplatelets studied by time-resolved X-ray scattering. SOFT MATTER 2021; 17:5747-5755. [PMID: 34019065 DOI: 10.1039/d1sm00251a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Time-resolved small-angle X-ray scattering (SAXS) was used to probe the assembly of cellulose nanocrystals (CNC) and montmorillonite (MNT) over a wide concentration range in aqueous levitating droplets. Analysis of the SAXS curves of the one-component and mixed dispersions shows that co-assembly of rod-like CNC and MNT nanoplatelets is dominated by the interactions between the dispersed CNC particles and that MNT promotes gelation and assembly of CNC, which occurred at lower total volume fractions in the CNC:MNT than in the CNC-only dispersions. The CNC dispersions displayed a d ∝ φ-1/2 scaling and a low-q power-law exponent of 2.0-2.2 for volume fractions up to 35%, which indicates that liquid crystal assembly co-exists and competes with gelation.
Collapse
Affiliation(s)
- Pierre Munier
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | - Andi Di
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | - Martin Kapuscinski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | - Mo Segad
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| |
Collapse
|
21
|
Toso S, Baranov D, Altamura D, Scattarella F, Dahl J, Wang X, Marras S, Alivisatos AP, Singer A, Giannini C, Manna L. Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS NANO 2021; 15:6243-6256. [PMID: 33481560 PMCID: PMC8155329 DOI: 10.1021/acsnano.0c08929] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Colloidal superlattices are fascinating materials made of ordered nanocrystals, yet they are rarely called "atomically precise". That is unsurprising, given how challenging it is to quantify the degree of structural order in these materials. However, once that order crosses a certain threshold, the constructive interference of X-rays diffracted by the nanocrystals dominates the diffraction pattern, offering a wealth of structural information. By treating nanocrystals as scattering sources forming a self-probing interferometer, we developed a multilayer diffraction method that enabled the accurate determination of the nanocrystal size, interparticle spacing, and their fluctuations for samples of self-assembled CsPbBr3 and PbS nanomaterials. The multilayer diffraction method requires only a laboratory-grade diffractometer and an open-source fitting algorithm for data analysis. The average nanocrystal displacement of 0.33 to 1.43 Å in the studied superlattices provides a figure of merit for their structural perfection and approaches the atomic displacement parameters found in traditional crystals.
Collapse
Affiliation(s)
- Stefano Toso
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- International
Doctoral Program in Science, Università
Cattolica del Sacro Cuore, 25121 Brescia, Italy
| | - Dmitry Baranov
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Davide Altamura
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Francesco Scattarella
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Jakob Dahl
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Xingzhi Wang
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sergio Marras
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - A. Paul Alivisatos
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - Cinzia Giannini
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
22
|
Toso S, Baranov D, Altamura D, Scattarella F, Dahl J, Wang X, Marras S, Alivisatos AP, Singer A, Giannini C, Manna L. Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS NANO 2021; 15:6243-6256. [PMID: 33481560 DOI: 10.26434/chemrxiv.13103507.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Colloidal superlattices are fascinating materials made of ordered nanocrystals, yet they are rarely called "atomically precise". That is unsurprising, given how challenging it is to quantify the degree of structural order in these materials. However, once that order crosses a certain threshold, the constructive interference of X-rays diffracted by the nanocrystals dominates the diffraction pattern, offering a wealth of structural information. By treating nanocrystals as scattering sources forming a self-probing interferometer, we developed a multilayer diffraction method that enabled the accurate determination of the nanocrystal size, interparticle spacing, and their fluctuations for samples of self-assembled CsPbBr3 and PbS nanomaterials. The multilayer diffraction method requires only a laboratory-grade diffractometer and an open-source fitting algorithm for data analysis. The average nanocrystal displacement of 0.33 to 1.43 Å in the studied superlattices provides a figure of merit for their structural perfection and approaches the atomic displacement parameters found in traditional crystals.
Collapse
Affiliation(s)
- Stefano Toso
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- International Doctoral Program in Science, Università Cattolica del Sacro Cuore, 25121 Brescia, Italy
| | - Dmitry Baranov
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Davide Altamura
- Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Francesco Scattarella
- Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Jakob Dahl
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xingzhi Wang
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sergio Marras
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - A Paul Alivisatos
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Cinzia Giannini
- Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
23
|
Zhao C, Xing Z, Zhang C, Fan Y, Liu H. Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. J Mater Chem B 2021; 9:2367-2383. [PMID: 33662083 DOI: 10.1039/d0tb02740e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder that can lead to loss of perceptive and athletic function due to the severe nerve damage. To date, pieces of evidence detailing the precise pathological mechanisms in SCI are still unclear. Therefore, drug therapy cannot effectively alleviate the SCI symptoms and faces the limitations of systemic administration with large side effects. Thus, the development of SCI treatment strategies is urgent and valuable. Due to the application of nanotechnology in pharmaceutical research, nanopharmaceutical-based regenerative medicine will bring colossal development space for clinical medicine. These nanopharmaceuticals (i.e. nanocrystalline drugs and nanocarrier drugs) are designed using different types of materials or bioactive molecules, so as to improve the therapeutic effects, reduce side effects, and subtly deliver drugs, etc. Currently, an increasing number of nanopharmaceutical products have been approved by drug regulatory agencies, which has also prompted more researchers to focus on the potential treatment strategies of SCI. Therefore, the purpose of this review is to summarize and elaborate the research progress as well as the challenges and future of nanopharmaceuticals in the treatment of SCI, aiming to promote further research of nanopharmaceuticals in SCI.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, P. R. China and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| |
Collapse
|
24
|
Kapuscinski M, Munier P, Segad M, Bergström L. Two-Stage Assembly of Mesocrystal Fibers with Tunable Diameters in Weak Magnetic Fields. NANO LETTERS 2020; 20:7359-7366. [PMID: 32924498 PMCID: PMC7587140 DOI: 10.1021/acs.nanolett.0c02770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Controlling the morphology and crystallographic coherence of assemblies of magnetic nanoparticles is a promising route to functional materials. Time-resolved small-angle X-ray scattering (SAXS) was combined with microscopy and scaling analysis to probe and analyze evaporation-induced assembly in levitating drops and thin films of superparamagnetic iron oxide nanocubes in weak magnetic fields. We show that assembly of micrometer-sized mesocrystals with a cubic shape preceded the formation of fibers with a high degree of crystallographic coherence and tunable diameters. The second-stage assembly of aligned cuboidal mesocrystals into fibers was driven by the magnetic field, but the first-stage assembly of the oleate-capped nanocubes was unaffected by weak magnetic fields. The transition from 3D growth of the primary mesocrystals to the second stage 1D assembly of the elongated fibers was related to the size and field dependence of isotropic van der Waals and directional dipolar interactions between the interacting mesocrystals.
Collapse
Affiliation(s)
- Martin Kapuscinski
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Pierre Munier
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Mo Segad
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|