1
|
Srivastava PK, Hassan Y, Lee S, Joe M, Abbas MS, Ahn H, Tiwari A, Ghosh S, Yoo WJ, Singh B, Low T, Lee C. Unusual Dzyaloshinskii-Moriya Interaction in Graphene/Fe 3GeTe 2 Van der Waals Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402604. [PMID: 38898739 DOI: 10.1002/smll.202402604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Dzyaloshinskii-Moriya interaction (DMI) is shown to induce a topologically protected chiral spin texture in magnetic/nonmagnetic heterostructures. In the context of van der Waals spintronic devices, graphene emerges as an excellent candidate material. However, due to its negligible spin-orbit interaction, inducing DMI to stabilize topological spins when coupled to 3d-ferromagnets remains challenging. Here, it is demonstrated that, despite these challenges, a sizeable Rashba-type spin splitting followed by significant DMI is induced in graphene/Fe3GeTe2. This is made possible due to an interfacial electric field driven by charge asymmetry together with the broken inversion symmetry of the heterostructure. These findings reveal that the enhanced DMI energy parameter, resulting from a large effective electron mass in Fe3GeTe2, remarkably contributes to stabilizing non-collinear spins below the Curie temperature, overcoming the magnetic anisotropy energy. These results are supported by the topological Hall effect, which coexists with the non-trivial breakdown of Fermi liquid behavior, confirming the interplay between spins and non-trivial topology. This work paves the way toward the design and control of interface-driven skyrmion-based devices.
Collapse
Affiliation(s)
| | - Yasir Hassan
- Department of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34143, South Korea
| | - Seungjun Lee
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Minwoong Joe
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34143, South Korea
| | - Muhammad Sabbtain Abbas
- Centre for Advanced Studies in Physics, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hyobin Ahn
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ankita Tiwari
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Subhasis Ghosh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Won Jong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Budhi Singh
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Changgu Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
2
|
Bhukta M, Dohi T, Bharadwaj VK, Zarzuela R, Syskaki MA, Foerster M, Niño MA, Sinova J, Frömter R, Kläui M. Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets. Nat Commun 2024; 15:1641. [PMID: 38409221 PMCID: PMC10897388 DOI: 10.1038/s41467-024-45375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
The ever-growing demand for device miniaturization and energy efficiency in data storage and computing technology has prompted a shift towards antiferromagnetic topological spin textures as information carriers. This shift is primarily owing to their negligible stray fields, leading to higher possible device density and potentially ultrafast dynamics. We realize in this work such chiral in-plane topological antiferromagnetic spin textures namely merons, antimerons, and bimerons in synthetic antiferromagnets by concurrently engineering the effective perpendicular magnetic anisotropy, the interlayer exchange coupling, and the magnetic compensation ratio. We demonstrate multimodal vector imaging of the three-dimensional Néel order parameter, revealing the topology of those spin textures and a globally well-defined chirality, which is a crucial requirement for controlled current-induced dynamics. Our analysis reveals that the interplay between interlayer exchange and interlayer magnetic dipolar interactions plays a key role to significantly reduce the critical strength of the Dzyaloshinskii-Moriya interaction required to stabilize topological spin textures, such as antiferromagnetic merons, in synthetic antiferromagnets, making them a promising platform for next-generation spintronics applications.
Collapse
Affiliation(s)
- Mona Bhukta
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Takaaki Dohi
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.
| | | | - Ricardo Zarzuela
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Maria-Andromachi Syskaki
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
- Singulus Technologies AG, Hanauer Landstrasse 107, 63796, Kahl am Main, Germany
| | - Michael Foerster
- ALBA Synchrotron Light Facility, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | - Miguel Angel Niño
- ALBA Synchrotron Light Facility, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | - Jairo Sinova
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Robert Frömter
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
3
|
Tang J, Wu Y, Jiang J, Kong L, Wang S, Tian M, Du H. Skyrmion-Bubble Bundles in an X-Type Sr 2 Co 2 Fe 28 O 46 Hexaferrite above Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306117. [PMID: 37668003 DOI: 10.1002/adma.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Indexed: 09/06/2023]
Abstract
Magnetic skyrmions are spin swirls that possess topological nontriviality and are considered particle-like entities. They are distinguished by an integer topological charge Q. The presence of skyrmion bundles provides an opportunity to explore the range of values for Q, which is crucial for the advancement of topological spintronic devices with multi-Q properties. In this study, a new material candidate, Sr2 Co2 Fe28 O46 hexaferrite of the X-type, which hosts small dipolar skyrmions at room temperature and above is presented. By exploiting reversed magnetic fields from metastable skyrmion bubbles at zero fields, skyrmion-bubble bundles with different interior skyrmion/bubble numbers, topological charges, and morphologies at room temperature are incorporated. These experimental findings are consistently supported by micromagnetic simulations. These results highlight the versatility of topological spin textures in centrosymmetric uniaxial magnets, thereby paving the way for the development of room-temperature topological spintronic devices with multi-Q characteristics.
Collapse
Affiliation(s)
- Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, 230601, Hefei, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yaodong Wu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Jialiang Jiang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lingyao Kong
- School of Physics and Optoelectronic Engineering, Anhui University, 230601, Hefei, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices School of Materials Science and Engineering, Anhui University, 230601, Hefei, China
| | - Mingliang Tian
- School of Physics and Optoelectronic Engineering, Anhui University, 230601, Hefei, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
4
|
He B, Tomasello R, Luo X, Zhang R, Nie Z, Carpentieri M, Han X, Finocchio G, Yu G. All-Electrical 9-Bit Skyrmion-Based Racetrack Memory Designed with Laser Irradiation. NANO LETTERS 2023; 23:9482-9490. [PMID: 37818857 DOI: 10.1021/acs.nanolett.3c02978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device. The key ingredient is the generation of a tailored nonuniform distribution of magnetic anisotropy via laser irradiation in order to (i) create a well-defined skyrmion nucleation center, (ii) define the memory cells hosting the information coded as the presence/absence of skyrmions, and (iii) improve the signal-to-noise ratio of anomalous Hall resistance measurements. This work introduces a strategy to unify previous findings and predictions for the development of a generation of racetrack memories with robust control of skyrmion nucleation and position, as well as effective skyrmion electrical detection.
Collapse
Affiliation(s)
- Bin He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Riccardo Tomasello
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xuming Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ran Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuyang Nie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mario Carpentieri
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina 98166, Italy
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
5
|
Liu C, Zhang S, Maier SA, Ren H. Disorder-Induced Topological State Transition in the Optical Skyrmion Family. PHYSICAL REVIEW LETTERS 2022; 129:267401. [PMID: 36608180 DOI: 10.1103/physrevlett.129.267401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Skyrmions endowed with topological protection have been extensively investigated in various platforms including magnetics, ferroelectrics, and liquid crystals, stimulating applications such as memories, logic devices, and neuromorphic computing. While the optical counterpart has been proposed and realized recently, the study of optical skyrmions is still in its infancy. Among the unexplored questions, the investigation of the topology induced robustness against disorder is of substantial importance on both fundamental and practical sides but remains elusive. In this Letter, we manage to generate optical skyrmions numerically in real space with different topological features at will, providing a unique platform to investigate the robustness of various optical skyrmions. A disorder-induced topological state transition is observed for the first time in a family of optical skyrmions composed of six classes with different skyrmion numbers. Intriguingly, the optical skyrmions produced from a vectorial hologram are exceptionally robust against scattering from a random medium, shedding light on topological photonic devices for the generation and manipulation of robust states for applications including imaging and communication.
Collapse
Affiliation(s)
- Changxu Liu
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom and Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universitaet Muenchen, 80539 Muenchen, Germany
| | - Shuang Zhang
- Department of Physics, University of Hong Kong, Hong Kong, China and Department of Electrical Engineering, University of Hong Kong, Hong Kong, China
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universitaet Muenchen, 80539 Muenchen, Germany; and Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Yang S, Ju TS, Kim C, Kim HJ, An K, Moon KW, Park S, Hwang C. Magnetic Field Magnitudes Needed for Skyrmion Generation in a General Perpendicularly Magnetized Film. NANO LETTERS 2022; 22:8430-8436. [PMID: 36282733 PMCID: PMC9650724 DOI: 10.1021/acs.nanolett.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Due to its topological protection, the magnetic skyrmion has been intensively studied for both fundamental aspects and spintronics applications. However, despite recent advancements in skyrmion research, the deterministic creation of isolated skyrmions in a generic perpendicularly magnetized film is still one of the most essential and challenging techniques. Here, we present a method to create magnetic skyrmions in typical perpendicular magnetic anisotropy (PMA) films by applying a magnetic field pulse and a method to determine the magnitude of the required external magnetic fields. Furthermore, to demonstrate the usefulness of this result for future skyrmion research, we also experimentally study the PMA dependence on the minimum size of skyrmions. Although field-driven skyrmion generation is unsuitable for device application, this result can provide an easier approach for obtaining isolated skyrmions, making skyrmion-based research more accessible.
Collapse
Affiliation(s)
- Seungmo Yang
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
- Department
of Physics, Pusan National University, Busan46241, Republic of Korea
| | - Changsoo Kim
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Hyun-Joong Kim
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Kyongmo An
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Kyoung-Woong Moon
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Sungkyun Park
- Department
of Physics, Pusan National University, Busan46241, Republic of Korea
| | - Chanyong Hwang
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| |
Collapse
|
7
|
Chen G, Ophus C, Lo Conte R, Wiesendanger R, Yin G, Schmid AK, Liu K. Ultrasensitive Sub-monolayer Palladium Induced Chirality Switching and Topological Evolution of Skyrmions. NANO LETTERS 2022; 22:6678-6684. [PMID: 35939526 DOI: 10.1021/acs.nanolett.2c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral spin textures are fundamentally interesting, with promise for device applications. Stabilizing chirality is conventionally achieved by introducing Dzyaloshinskii-Moriya interaction (DMI) in asymmetric multilayers, where the thickness of each layer is at least a few monolayers. Here we report an ultrasensitive chirality switching in (Ni/Co)n multilayer induced by capping with only 0.22 monolayer of Pd. Using spin-polarized low-energy electron microscopy, we monitor the gradual evolution of domain walls from left-handed to right-handed Néel walls and quantify the DMI induced by the Pd capping layer. We also observe the chiral evolution of a skyrmion during the DMI switching, where no significant topological protection is found as the skyrmion winding number varies. This corresponds to a minimum energy cost of <1 attojoule during the skyrmion chirality switching. Our results demonstrate the detailed chirality evolution within skyrmions during the DMI sign switching, which is relevant to practical applications of skyrmionic devices.
Collapse
Affiliation(s)
- Gong Chen
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Colin Ophus
- NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Roberto Lo Conte
- Department of Materials Science & Engineering, University of California, Berkeley, California 95720, United States
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | | | - Gen Yin
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Andreas K Schmid
- NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kai Liu
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
8
|
Wei W, Tang J, Wu Y, Wang Y, Jiang J, Li J, Soh Y, Xiong Y, Tian M, Du H. Current-Controlled Topological Magnetic Transformations in a Nanostructured Kagome Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101610. [PMID: 34224181 DOI: 10.1002/adma.202101610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Topological magnetic charge Q is a fundamental parameter that describes the magnetic domains and determines their intriguing electromagnetic properties. The ability to switch Q in a controlled way by electrical methods allows for flexible manipulation of electromagnetic behavior in future spintronic devices. Here, the room-temperature current-controlled topological magnetic transformations between Q = -1 skyrmions and Q = 0 stripes or type-II bubbles in a kagome crystal Fe3 Sn2 are reported. It is shown that reproducible and reversible skyrmion-bubble and skyrmion-stripe transformations can be achieved by tuning the density of nanosecond pulsed current of the order of ≈1010 A m-2 . Further numerical simulations suggest that spin-transfer torque combined with Joule thermal heating effects determine the current-induced topological magnetic transformations.
Collapse
Affiliation(s)
- Wensen Wei
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jin Tang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yaodong Wu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory for Photoelectric Detection Science and Technology of Education Department of Anhui Province, and School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Yihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jialiang Jiang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Junbo Li
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yona Soh
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Yimin Xiong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Mingliang Tian
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
9
|
Je SG, Thian D, Chen X, Huang L, Jung DH, Chao W, Lee KS, Hong JI, Soumyanarayanan A, Im MY. Targeted Writing and Deleting of Magnetic Skyrmions in Two-Terminal Nanowire Devices. NANO LETTERS 2021; 21:1253-1259. [PMID: 33481614 DOI: 10.1021/acs.nanolett.0c03686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable writing and deleting of nanoscale magnetic skyrmions are key requirements for their use as information carriers for next-generation memory and computing technologies. While several schemes have been proposed, they require complex fabrication techniques or precisely tailored electrical inputs, which limits their long-term scalability. Here, we demonstrate an alternative approach for writing and deleting skyrmions using conventional electrical pulses within a simple, two-terminal wire geometry. X-ray microscopy experiments and micromagnetic simulations establish the observed skyrmion creation and annihilation as arising from Joule heating and Oersted field effects of the current pulses, respectively. The unique characteristics of these writing and deleting schemes, such as spatial and temporal selectivity, together with the simplicity of the two-terminal device architecture, provide a flexible and scalable route to the viable applications of skyrmions.
Collapse
Affiliation(s)
- Soong-Geun Je
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Physics, Chonnam National University, Gwangju 61186, Korea
| | - Dickson Thian
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, 138634 Singapore
| | - Xiaoye Chen
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, 138634 Singapore
- Data Storage Institute, Agency for Science, Technology, and Research, 138634 Singapore
| | - Lisen Huang
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, 138634 Singapore
- Data Storage Institute, Agency for Science, Technology, and Research, 138634 Singapore
| | - Dae-Han Jung
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Weilun Chao
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ki-Suk Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jung-Il Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Anjan Soumyanarayanan
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, 138634 Singapore
- Data Storage Institute, Agency for Science, Technology, and Research, 138634 Singapore
- Department of Physics, National University of Singapore, 117551 Singapore
| | - Mi-Young Im
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
10
|
Turnbull LA, Birch MT, Laurenson A, Bukin N, Burgos-Parra EO, Popescu H, Wilson MN, Stefančič A, Balakrishnan G, Ogrin FY, Hatton PD. Tilted X-Ray Holography of Magnetic Bubbles in MnNiGa Lamellae. ACS NANO 2021; 15:387-395. [PMID: 33119252 DOI: 10.1021/acsnano.0c07392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoscopic lamellae of centrosymmetric ferromagnetic alloys have recently been reported to host the biskyrmion spin texture; however, this has been disputed as the misidentication of topologically trivial type-II magnetic bubbles. Here we demonstrate resonant soft X-ray holographic imaging of topological magnetic states in lamellae of the centrosymmetric alloy (Mn1-xNix)0.65Ga0.35 (x = 0.5), showing the presence of magnetic stripes evolving into single core magnetic bubbles. We observe rotation of the stripe phase via the nucleation and destruction of disclination defects. This indicates the system behaves as a conventional uniaxial ferromagnet. By utilizing the holography with extended reference by autocorrelation linear differential operator (HERALDO) method, we show tilted holographic images at 30° incidence confirming the presence of type-II magnetic bubbles in this system. This study demonstrates the utility of X-ray imaging techniques in identifying the topology of localized structures in nanoscale magnetism.
Collapse
Affiliation(s)
- Luke A Turnbull
- Centre for Materials Physics, Durham University, Durham, DH1 3LE United Kingdom
| | - Max T Birch
- Centre for Materials Physics, Durham University, Durham, DH1 3LE United Kingdom
- Diamond Light Source, Didcot, OX11 0DE United Kingdom
| | - Angus Laurenson
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL United Kingdom
| | - Nick Bukin
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL United Kingdom
| | | | - Horia Popescu
- Synchrotron SOLEIL, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Murray N Wilson
- Centre for Materials Physics, Durham University, Durham, DH1 3LE United Kingdom
| | - Aleš Stefančič
- Department of Physics, University of Warwick, Coventry, CV4 7AL United Kingdom
| | - Geetha Balakrishnan
- Department of Physics, University of Warwick, Coventry, CV4 7AL United Kingdom
| | - Feodor Y Ogrin
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL United Kingdom
| | - Peter D Hatton
- Centre for Materials Physics, Durham University, Durham, DH1 3LE United Kingdom
| |
Collapse
|
11
|
Ognev AV, Kolesnikov AG, Kim YJ, Cha IH, Sadovnikov AV, Nikitov SA, Soldatov IV, Talapatra A, Mohanty J, Mruczkiewicz M, Ge Y, Kerber N, Dittrich F, Virnau P, Kläui M, Kim YK, Samardak AS. Magnetic Direct-Write Skyrmion Nanolithography. ACS NANO 2020; 14:14960-14970. [PMID: 33152236 DOI: 10.1021/acsnano.0c04748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to control the skyrmion lattice characteristics and the number of scans resulting in the complete formation of a skyrmion lattice is the distance between two adjacent scanning lines of a magnetic force microscopy probe. The creation of skyrmion patterns with complex geometry is demonstrated, and the physical mechanism of direct magnetic writing of skyrmions is comprehended by micromagnetic simulations. This study shows a potential of a direct-write (maskless) skyrmion (topological) nanolithography with sub-100 nm resolution, where each skyrmion acts as a pixel in the final topological image.
Collapse
Affiliation(s)
- A V Ognev
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
| | - A G Kolesnikov
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
| | - Yong Jin Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In Ho Cha
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - A V Sadovnikov
- Laboratory "Metamaterials", Saratov State University, Saratov 410012, Russia
- Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
| | - S A Nikitov
- Laboratory "Metamaterials", Saratov State University, Saratov 410012, Russia
- Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
| | - I V Soldatov
- Leibniz Institute for Solid State and Material Research (IFW-Dresden), Dresden 01069, Germany
- Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg 620075, Russia
| | - A Talapatra
- Indian Institute of Technology, Hyderabad 502285, India
| | - J Mohanty
- Indian Institute of Technology, Hyderabad 502285, India
| | - M Mruczkiewicz
- Institute of Electrical Engineering, SAS, Bratislava 841 04, Slovakia
- Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences, Bratislava 845 11, Slovakia
| | - Y Ge
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - N Kerber
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - F Dittrich
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - P Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - M Kläui
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - A S Samardak
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
- National Research South Ural State University, Chelyabinsk 454080, Russia
| |
Collapse
|
12
|
Tang J, Kong L, Wu Y, Wang W, Chen Y, Wang Y, Li J, Soh Y, Xiong Y, Tian M, Du H. Target Bubbles in Fe 3Sn 2 Nanodisks at Zero Magnetic Field. ACS NANO 2020; 14:10986-10992. [PMID: 32806036 DOI: 10.1021/acsnano.0c04036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a vortex-like magnetic configuration in uniaxial ferromagnet Fe3Sn2 nanodisks using differential phase contrast scanning transmission electron microscopy. This magnetic configuration is transferred from a conventional magnetic vortex using a zero-magnetic-field warming process and is characterized by a series of concentric cylinder domains. We termed them as "target bubbles" that are identified as three-dimensional depth-modulated magnetic objects in combination with numerical simulations. Target bubbles have room-temperature stability even at zero magnetic field and multiple stable magnetic configurations. These advantages render the target bubble an ideal bit to be an information carrier and can advance magnetic target bubbles toward functionalities in the long term by incorporating emergent degrees of freedom and purely electrically controllable magnetism.
Collapse
Affiliation(s)
- Jin Tang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Lingyao Kong
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Yaodong Wu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Weiwei Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yutao Chen
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Yihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Junbo Li
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Y Soh
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Yimin Xiong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
| | - Mingliang Tian
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese Academy of Sciences, and University of Science and Technology of China, Hefei, 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|