1
|
Rong D, Li Z, Qi Q, Liu Z, Zhou Z, Xu X. Simulation Analysis of Thermoacoustic Effect of CNT Film with Metasurface-Enhanced Acoustic Autofocusing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1481. [PMID: 39330639 PMCID: PMC11435258 DOI: 10.3390/nano14181481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
This study introduces a novel thermoacoustic (TA) focusing system enhanced by Airy beam-based acoustic metasurfaces, significantly improving acoustic focusing and efficiency. The system integrates a TA emitter, fabricated from carbon nanotube (CNT) films, with a binary acoustic metasurface capable of generating quasi-Airy beams. Through finite element simulations, the system's heat conduction, acoustic focusing, and self-healing properties were thoroughly analyzed. The results demonstrate that the system achieves superior sub-wavelength focusing, tunable focal length via frequency control, and robust self-healing, even in the presence of obstacles. These findings address current limitations in TA emitters and suggest broader applications in medical ultrasound and advanced technology.
Collapse
Affiliation(s)
- Dalun Rong
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhe Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China; (Z.L.); (Q.Q.); (Z.Z.)
| | - Qianshou Qi
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China; (Z.L.); (Q.Q.); (Z.Z.)
| | - Zhengnan Liu
- School of Traffic and Transport Engineering, Changsha University of Science & Technology, Changsha 410114, China;
- Hunan Communications Research Institute Co., Ltd., Changsha 410015, China
| | - Zhenhuan Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China; (Z.L.); (Q.Q.); (Z.Z.)
| | - Xinsheng Xu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China; (Z.L.); (Q.Q.); (Z.Z.)
| |
Collapse
|
2
|
Hou W, Wei Y, Wang Y, Duan S, Guo Z, Tian H, Yang Y, Ren TL. A Large-Scale and Low-Cost Thermoacoustic Loudspeaker Based on Three-Dimensional Graphene Foam. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38683903 DOI: 10.1021/acsami.3c18511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Graphene is a promising material for thermoacoustic sources due to its extremely low heat capacity per unit area and high thermal conductivity. However, current graphene thermoacoustic devices have limited device area and relatively high cost, which limit their applications of daily use. Here, we adopt a dip-coating method to fabricate a large-scale and cost-effective graphene sound source. This sound source has the three-dimensional (3D) porous structure that can increase the contact area between graphene and air, thus assisting heat to release into the air. In this method, polyurethane (PU) is used as a support, and graphene nanoplates are attached onto the PU skeleton so that a highly flexible graphene foam (GrF) device is obtained. At a measuring distance of 1 mm, it can emit sound at up to 70 dB under the normalized input power of 1 W. Considering its unique porous structure, we establish a thermoacoustic analysis model to simulate the acoustic performance of GrF. Furthermore, the obtained GrF can be made up to 44 in. (100 cm × 50 cm) in size, and it has good flexibility and processability, which broadens the application fields of GrF loudspeakers. It can be attached to the surfaces of objects with different shapes, making it suitable to be used as a large-area speaker in automobiles, houses, and other application scenarios, such as neck mounted speaker. In addition, it can also be widely used as a fully flexible in-ear earphone.
Collapse
Affiliation(s)
- Weiwei Hou
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yuhong Wei
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yunfan Wang
- Electrical Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuwen Duan
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Zhanfeng Guo
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Fu J, Deng Z, Liu C, Liu C, Luo J, Wu J, Peng S, Song L, Li X, Peng M, Liu H, Zhou J, Qiao Y. Intelligent, Flexible Artificial Throats with Sound Emitting, Detecting, and Recognizing Abilities. SENSORS (BASEL, SWITZERLAND) 2024; 24:1493. [PMID: 38475029 DOI: 10.3390/s24051493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
In recent years, there has been a notable rise in the number of patients afflicted with laryngeal diseases, including cancer, trauma, and other ailments leading to voice loss. Currently, the market is witnessing a pressing demand for medical and healthcare products designed to assist individuals with voice defects, prompting the invention of the artificial throat (AT). This user-friendly device eliminates the need for complex procedures like phonation reconstruction surgery. Therefore, in this review, we will initially give a careful introduction to the intelligent AT, which can act not only as a sound sensor but also as a thin-film sound emitter. Then, the sensing principle to detect sound will be discussed carefully, including capacitive, piezoelectric, electromagnetic, and piezoresistive components employed in the realm of sound sensing. Following this, the development of thermoacoustic theory and different materials made of sound emitters will also be analyzed. After that, various algorithms utilized by the intelligent AT for speech pattern recognition will be reviewed, including some classical algorithms and neural network algorithms. Finally, the outlook, challenge, and conclusion of the intelligent AT will be stated. The intelligent AT presents clear advantages for patients with voice impairments, demonstrating significant social values.
Collapse
Affiliation(s)
- Junxin Fu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhikang Deng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuting Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shiqi Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinyi Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Minli Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Kim J, Jung G, Jung S, Bae MH, Yeom J, Park J, Lee Y, Kim YR, Kang DH, Oh JH, Park S, An KS, Ko H. Shape-Configurable MXene-Based Thermoacoustic Loudspeakers with Tunable Sound Directivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306637. [PMID: 37740254 DOI: 10.1002/adma.202306637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Film-type shape-configurable speakers with tunable sound directivity are in high demand for wearable electronics. Flexible, thin thermoacoustic (TA) loudspeakers-which are free from bulky vibrating diaphragms-show promise in this regard. However, configuring thin TA loudspeakers into arbitrary shapes is challenging because of their low sound pressure level (SPL) under mechanical deformations and low conformability to other surfaces. By carefully controlling the heat capacity per unit area and thermal effusivity of an MXene conductor and substrates, respectively, it fabricates an ultrathin MXene-based TA loudspeaker exhibiting high SPL output (74.5 dB at 15 kHz) and stable sound performance for 14 days. Loudspeakers with the parylene substrate, whose thickness is less than the thermal penetration depth, generated bidirectional and deformation-independent sound in bent, twisted, cylindrical, and stretched-kirigami configurations. Furthermore, it constructs parabolic and spherical versions of ultrathin, large-area (20 cm × 20 cm) MXene-based TA loudspeakers, which display sound-focusing and 3D omnidirectional-sound-generating attributes, respectively.
Collapse
Affiliation(s)
- Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Geonyoung Jung
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Seokhee Jung
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Myung Hwan Bae
- School of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Young-Ryul Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Joo Hwan Oh
- School of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Seungyoung Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| |
Collapse
|
5
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
6
|
Lee KR, Seo J, Kwon SS, Kim N, Lee YJ, Son JG, Lee SH. Vibroacoustic Characteristics of a Specific Patterned Polymer with Graphene for an Electrostatic Speaker. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7319-7328. [PMID: 36701764 DOI: 10.1021/acsami.2c15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene/polymer actuators were developed using bilayer graphene and various polymer substrates for use as transparent, flexible, and robust electrostatic speaker units. Additionally, a resonant frequency shift was induced using a polymer substrate on which various micropatterns were transferred to boost bass. The total sound pressure level (SPL) in the graphene/polymer actuator was measured by a sweep, and the frequency of the spectrum was confirmed to be one-third that of the octave band frequency. The change in the vibroacoustic characteristic with changes in Young's modulus and density was studied for the polymers of the same size and thickness. Particularly, the possibility of boosting bass was confirmed by inducing a resonant frequency shift and increasing the total SPL by adding micropatterns on a polymer substrate under the same conditions. The resonance frequency of 523 Hz and the SPL of 54 dBA in flat polymer film became 296 Hz and 69 dBA in a specific pattern, which produced a sound of >15 dB based on the same flat polymer. We expect that the design and information provided herein can provide the key parameters required to change the resonant frequency in small-size devices for the application of graphene/polymer thin-film actuators.
Collapse
Affiliation(s)
- Kyoung-Ryul Lee
- Center for Biomicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Jaemin Seo
- Center for Biomicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Sun Sang Kwon
- Center for Biomicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Namyun Kim
- Center for Biomicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Yi Jae Lee
- Center for Biomicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Advanced Materials Research Division, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Soo Hyun Lee
- Center for Biomicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Korea
| |
Collapse
|
7
|
Rong J, Zhou J, Zhou Y, Hu C, Li L, Guo W. 3D Single-Layer-Dominated Graphene Foam for High-Resolution Strain Sensing and Self-Monitoring Shape Memory Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205301. [PMID: 36319465 DOI: 10.1002/smll.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Flexible intelligent materials are desired to effectively regulate their own deformation and accurately sense their immediate morphology at the same time. Graphene foam is an attractive material for strain sensing and electrical/thermal performance control due to its outstanding mechanical, electrical, and thermal properties. However, graphene-foam-based materials with both strain sensing and deformation control capabilities are rarely reported. Here, a multiscale design of graphene foam with a single-layer-graphene-dominated microstructure and resilient 3D network architecture, which leads to exceptional strain sensing performance as well as modulation ability of the electrical and thermal conductivity for shape memory polymers, is reported. The graphene foams exhibit a strain detection limit of 0.033%, a rapid response of 53 ms, long-term stability over 10 000 cycles, significant thermoacoustic effect, and great heat-generation and heat-diffusion ability. By combining these advantages, an electro-activated shape-memory composite that is capable of monitoring its own shape state during its morphing process, is demonstrated.
Collapse
Affiliation(s)
- Jiasheng Rong
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jianxin Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yucheng Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Cong Hu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Luxian Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
8
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Zhu S, Liu Y, Gu Z, Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 2022; 188:114420. [PMID: 35835354 DOI: 10.1016/j.addr.2022.114420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Two-dimensional (2D) nanomaterials with versatile properties have been widely applied in the field of biomedicine. Despite various studies having reviewed the development of biomedical 2D nanomaterials, there is a lack of a study that objectively summarizes and analyzes the research trend of this important field. Here, we employ a series of bibliometric methods to identify the development of the 2D nanomaterial-related biomedical field during the past 10 years from a holistic point of view. First, the annual publication/citation growth, country/institute/author distribution, referenced sources, and research hotspots are identified. Thereafter, based on the objectively identified research hotspots, the contributions of 2D nanomaterials to the various biomedical subfields, including those of biosensing, imaging/therapy, antibacterial treatment, and tissue engineering are carefully explored, by considering the intrinsic properties of the nanomaterials. Finally, prospects and challenges have been discussed to shed light on the future development and clinical translation of 2D nanomaterials. This review provides a novel perspective to identify and further promote the development of 2D nanomaterials in biomedical research.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM. A Review on the Applications of Graphene in Mechanical Transduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101326. [PMID: 34288155 DOI: 10.1002/adma.202101326] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Indexed: 05/26/2023]
Abstract
A pressing need to develop low-cost, environmentally friendly, and sensitive sensors has arisen with the advent of the always-connected paradigm of the internet-of-things (IoT). In particular, mechanical sensors have been widely studied in recent years for applications ranging from health monitoring, through mechanical biosignals, to structure integrity analysis. On the other hand, innovative ways to implement mechanical actuation have also been the focus of intense research in an attempt to close the circle of human-machine interaction, and move toward applications in flexible electronics. Due to its potential scalability, disposability, and outstanding properties, graphene has been thoroughly studied in the field of mechanical transduction. The applications of graphene in mechanical transduction are reviewed here. An overview of sensor and actuator applications is provided, covering different transduction mechanisms such as piezoresistivity, capacitive sensing, optically interrogated displacement, piezoelectricity, triboelectricity, electrostatic actuation, chemomechanical and thermomechanical actuation, as well as thermoacoustic emission. A critical review of the main approaches is presented within the scope of a wider discussion on the future of this so-called wonder material in the field of mechanical transduction.
Collapse
Affiliation(s)
- Alexandre F Carvalho
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Bohdan Kulyk
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | | | - Elvira Fortunato
- I3N/CENIMAT, Materials Science Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Florinda M Costa
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
11
|
Cui TR, Qiao YC, Gao JW, Wang CH, Zhang Y, Han L, Yang Y, Ren TL. Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. Molecules 2021; 26:6947. [PMID: 34834039 PMCID: PMC8621829 DOI: 10.3390/molecules26226947] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 is a highly contagious human infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the war with the virus is still underway. Since no specific drugs have been made available yet and there is an imbalance between supply and demand for vaccines, early diagnosis and isolation are essential to control the outbreak. Current nucleic acid testing methods require high sample quality and laboratory conditions, which cannot meet flexible applications. Here, we report a laser-induced graphene field-effect transistor (LIG-FET) for detecting SARS-CoV-2. The FET was manufactured by different reduction degree LIG, with an oyster reef-like porous graphene channel to enrich the binding point between the virus protein and sensing area. After immobilizing specific antibodies in the channel, the FET can detect the SARS-CoV-2 spike protein in 15 min at a concentration of 1 pg/mL in phosphate-buffered saline (PBS) and 1 ng/mL in human serum. In addition, the sensor shows great specificity to the spike protein of SARS-CoV-2. Our sensors can realize fast production for COVID-19 rapid testing, as each LIG-FET can be fabricated by a laser platform in seconds. It is the first time that LIG has realized a virus sensing FET without any sample pretreatment or labeling, which paves the way for low-cost and rapid detection of COVID-19.
Collapse
Affiliation(s)
- Tian-Rui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yan-Cong Qiao
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jian-Wei Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Chun-Hua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Research on Frequency Doubling Effect of Thermoacoustic Speaker Based on Graphene Film. SENSORS 2021; 21:s21186030. [PMID: 34577237 PMCID: PMC8470130 DOI: 10.3390/s21186030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022]
Abstract
In this work, the frequency doubling effect of thermoacoustic speakers is studied, and a method is analyzed to suppress the frequency doubling effect. Three cases were analyzed by superimposing the DC bias on the AC excitation: (1) DC is less than AC; (2) DC is equal to AC; (3) DC is greater than AC. We found that the frequency doubling effect can be well suppressed by superimposing a larger DC excitation on the AC excitation. The laser scribing technology was used to prepare graphene film in only one step, and the screen printing technology was used to prepare conductive electrodes. The microphone and B&K system was used to record the sound pressure level and study the suppression of frequency doubling effect. Finally, the sound pressure levels with the three different kinds of excitations were measured. The measured results show that they have a good agreement with the theoretical results. The suppression effect will be better when DC amplitude is greater than AC amplitude. Therefore, this work has certain reference significance for the further study and application of thermoacoustic speakers.
Collapse
|
13
|
Cao B, Ye Z, Yang L, Gou L, Wang Z. Recent progress in Van der Waals 2D PtSe 2. NANOTECHNOLOGY 2021; 32:412001. [PMID: 34157685 DOI: 10.1088/1361-6528/ac0d7c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
As a new member in two-dimensional (2D) transition metal dichalcogenides (TMDCs) family, platinum diselenium (PtSe2) has many excellent properties, such as the layer-dependent band gap, high carrier mobility, high photoelectrical coupling, broadband response, etc, thus it shows good promising application in room temperature photodetectors, broadband photodetectors, transistors and other fields. Furthermore, compared with other TMDCs, PtSe2is chemical inert in ambient, showing nano-devices potential with higher performance and stability. However, up to now, the synthesis and its device applications are in its early stage. This review systematically summarized the state of the art of PtSe2from its structure, property, synthesis and potential application. Finally, the current challenges and future perspectives are outlined for the applications of 2D PtSe2.
Collapse
Affiliation(s)
- Banglin Cao
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Zimeng Ye
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Li Gou
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| |
Collapse
|
14
|
Gao Y, Cheng Z, Wen M, Zhang X, Wu F, Dong H, Zhang G. New two-dimensional arsenene polymorph predicted by first-principles calculation: robust direct bandgap and enhanced optical adsorption. NANOTECHNOLOGY 2021; 32:245702. [PMID: 33652419 DOI: 10.1088/1361-6528/abeb3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In this work, we predict a new polymorph of 2D monolayer arsenic. This structure, namedδ-As, consists of a centrosymmetric monolayer, which is thermodynamically and kinetically stable. Distinctly different from the previously predicted monolayer arsenic with an indirect bandgap, the new allotrope exhibits a direct bandgap characteristic. Moreover, while keeping the direct bandgap unchanged, the bandgap of monolayerδ-As can be adjusted from 1.83 eV to 0 eV by applying zigzag-direction tensile strain, which is pronounced an advantage for solar cell and photodetector applications.
Collapse
Affiliation(s)
- Yifan Gao
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zixin Cheng
- Institute of Aerospace and Mechanics, Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Minru Wen
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xin Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Fugen Wu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| |
Collapse
|