1
|
Gishan M, Middya P, Drew MGB, Frontera A, Chattopadhyay S. Synthesis, structural characterization, and theoretical analysis of novel zinc(ii) schiff base complexes with halogen and hydrogen bonding interactions. RSC Adv 2024; 14:30896-30911. [PMID: 39346528 PMCID: PMC11430572 DOI: 10.1039/d4ra06217e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
In this article, we present the synthesis and characterization of three zinc(ii) complexes, [ZnII(HL1)2] (1), [ZnII(HL2)2]·2H2O (2) and [ZnII(HL3)2] (3), with three tridentate Schiff base ligands, H2L1, H2L2, and H2L3. The structures of the complexes were confirmed by single-crystal X-ray diffraction analysis. DFT calculations were performed to gain insights into the self-assembly of the complexes in their solid-state structures. Complex 1 exhibits dual halogen-bonding interactions (Br⋯Br and Br⋯O) in its solid-state structure, which have been thoroughly investigated through molecular electrostatic potential (MEP) surface calculations, alongside QTAIM and NCIPlot analyses. Furthermore, complex 2 features a fascinating hydrogen-bonding network involving lattice water molecules, which serves to link the [ZnII(HL2)2] units into a one-dimensional supramolecular polymer. This network has been meticulously examined using QTAIM and NCIplot analyses, allowing for an estimation of the hydrogen bond strengths. The significance of H-bonds and CH⋯π interactions in complex 3 was investigated, as these interactions are crucial for the formation of infinite 1D chains in the solid state.
Collapse
Affiliation(s)
- Md Gishan
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Puspendu Middya
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Michael G B Drew
- School of Chemistry, The University of Reading P.O. Box 224, Whiteknights Reading RG6 6AD UK
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | | |
Collapse
|
2
|
Magwa NP, Rashamuse TJ. Synthesis, characterization, and crystal structure of hexa-kis-(1-methyl-1 H-imidazole-κ N 3)zinc(II) dinitrate. Acta Crystallogr E Crystallogr Commun 2024; 80:1054-1058. [PMID: 39372172 PMCID: PMC11451501 DOI: 10.1107/s2056989024008806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methyl-imidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group P. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C-H⋯O inter-actions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.
Collapse
Affiliation(s)
- Nomampondo Penelope Magwa
- University of South Africa, Department of Chemistry, Private Bag X6, Florida, Gauteng, 1710, South Africa
| | | |
Collapse
|
3
|
Enríquez-Palacios E, Robledo-Patiño AV, Zelada-Guillén GA. Zn-Salphen Acrylic Films Powered by Aggregation-Induced Enhanced Emission for Sensing Applications. J Fluoresc 2024; 34:1903-1912. [PMID: 37665511 PMCID: PMC11249402 DOI: 10.1007/s10895-023-03399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Zn(II) complexes possess attractive characteristics for supramolecular chemistry, catalysis, and optoelectronic applications, while Zn-Salphen counterparts are also suitable as chemical sensors, although limited by solution-based to date. In this study, we report the synthesis of new polymers from methyl methacrylate, n-butyl acrylate, and a non-symmetrical Zn-Salphen complex. We show that this low-fluorescent complex exhibits aggregation-induced emission enhancement (AIEE) properties and that, the incorporation of AIEE complexes into a polymeric matrix make it possible to achieve fluorescent films with enhanced fluorescence suitable for sensing applications. As a proof of concept, these films could detect acetic acid, showing a decrease of up to 73% in the original fluorescence. Host/guest studies showed a subtle disruption of the emission in aggregates upon treatment with anion guests. These results indicate that an interaction between the guest and Zn-Salphen complex may occur, stabilizing or destabilizing the complex and causing a concomitant increase or decrease in emission.
Collapse
Affiliation(s)
- Ernesto Enríquez-Palacios
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico.
| | - Ana Victoria Robledo-Patiño
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico.
| |
Collapse
|
4
|
Lutsenko IA, Baravikov DE, Koshenskova KA, Kiskin MA, Nelyubina YV, Primakov PV, Voronina YK, Garaeva VV, Aleshin DA, Aliev TM, Danilenko VN, Bekker OB, Eremenko IL. What are the prospects for using complexes of copper(ii) and zinc(ii) to suppress the vital activity of Mycolicibacterium smegmatis? RSC Adv 2022; 12:5173-5183. [PMID: 35425585 PMCID: PMC8981969 DOI: 10.1039/d1ra08555g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
New complexes of zinc(ii) and copper(ii) with 2-furoic acid (Hfur), acetic acids and N-donor ligands with the compositions [Zn2(fur)4] n (1), [Zn2(fur)4(NH2py)2] (2, NH2py = 3-aminopyridine), [Zn(fur)2(neoc)] (3, neoc = 2,9-dimethyl-1,10-phenantroline), [Zn(OAc)2(neoc)] (4, OAc = acetat-anion), and [Cu(fur)2(neoc)(H2O)] (5) were synthesized. The structures of the compounds were established by single crystal X-ray diffraction analysis. Complexes 1 and 2 are binuclear; whereas 3-5 are mononuclear. The stabilization of supramolecular architectures in crystals for compounds 1-5 occurs due to π-π-bonding between heterocycles and hydrogen interactions that provide good solubility in aqueous solutions. The stability of the complexes upon dissolution in 5% dextrose and 0.9% NaCl was confirmed by UV-vis spectroscopic and NMR (1H) data. The study of in vitro biological activity was carried out against the non-pathogenic strain of Mycolicibacterium smegmatis that is a model for M. tuberculosis. The synergistic effect of ligands is observed for complexes 3-5 and is characterized by an increase in the biological activity values. On passage from Zn2+ to Cu2+ complexes, the biological activity increases and the maximum effect is observed for compound [Cu(fur)2(phen)]. Analysis of the transcriptomic profiles of the M. smegmatis mc 2 155 strain under the pressure of the copper complex [Cu(fur)2(phen)] made it possible to isolate 185 genes, one quarter of which are associated with the compensation of iron deficiency in the bacterial strain. Genes associated with the transport and metabolism of heavy metals, biosynthesis of fatty and amino acids, biodegradation and transport of urea were also isolated.
Collapse
Affiliation(s)
- Irina A Lutsenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Dmitry E Baravikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
- D.I. Mendeleev University of Chemical Technology of Russia M. Pirogovskaya str. 1a 119435 Moscow Russian Federation
| | - Kseniya A Koshenskova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
- D.I. Mendeleev University of Chemical Technology of Russia M. Pirogovskaya str. 1a 119435 Moscow Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Petr V Primakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Yulia K Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Veronika V Garaeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
- Moscow Institute of Physics and Technology 9 Institutskiy per, Dolgoprudny Moscow Region 141701 Russian Federation
| | - Dmytry A Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Teimur M Aliev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Valery N Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences Gubkina 3119333 Moscow Russian Federation
| | - Olga B Bekker
- Vavilov Institute of General Genetics, Russian Academy of Sciences Gubkina 3119333 Moscow Russian Federation
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| |
Collapse
|
5
|
Stereochemical Geometries and Photoluminescence in Pseudo-Halido-Zinc(II) Complexes. Structural Comparison between the Corresponding Cadmium(II) Analogs. INORGANICS 2021. [DOI: 10.3390/inorganics9070053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Six pseudohalide zinc(II) containing a variety of N-donor auxiliary amines were structurally characterized. These include two mononuclear trigonal bipyramidal [Zn(NTB)(N3)]ClO4·½H2O (3) and [Zn(TPA)(NCS)]ClO4 (4), two distorted octahedral [Zn(1,8-damnph)2(dca)2] (5) and [Zn(8-amq)2(dca)2] (6a) as well as two 1D polymeric chains catena-[Zn(isq)2(μ1,5-dca)2] (7) and catena-[Zn(N,N-Me2en)2(μ1,5-dca)]dca (8), where NTB = tris(2-benzimidazolylmethyl)amine, TPA = tris(2-pyridylmethyl)amine, 1,8-damnph = 1,8-diaminonaphthalene, 8-amq = 8-amino-quinoline, isq = isoquinoline (isq) and N,N-Me2en = N,N-dimethylethylenediamine. In general, with the exception of 6 and 8, the complexes exhibited luminescence emission in MeOH associated with red shift of the emission maxima, and the strongest visible fluorescence peak was detected at 421 nm (λex = 330 nm) in the case of Complex 5.
Collapse
|
6
|
Diana R, Panunzi B. Zinc (II) and AIEgens: The "Clip Approach" for a Novel Fluorophore Family. A Review. Molecules 2021; 26:4176. [PMID: 34299451 PMCID: PMC8304007 DOI: 10.3390/molecules26144176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of "AIEgens" was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic-inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal. In this perspective, the abundant, inexpensive, and nontoxic d10 zinc cation offers unique opportunities for building AIE active fluorophores, sensing probes, and bioimaging tools. Considering the novelty of the topic, relevant examples collected in the last 5 years (2016-2021) through scientific production can be considered fully representative of the state-of-the-art. Starting from the simple phenomenological approach and considering different typological and chemical units and structures, we focused on zinc-based AIEgens offering synthetic novelty, research completeness, and relevant applications. A special section was devoted to Zn(II)-based AIEgens for living cell imaging as the novel technological frontier in biology and medicine.
Collapse
Affiliation(s)
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
7
|
Mohamad NS, Zakaria NH, Daud N, Tan LL, Ta GC, Heng LY, Hassan NI. The Role of 8-Amidoquinoline Derivatives as Fluorescent Probes for Zinc Ion Determination. SENSORS (BASEL, SWITZERLAND) 2021; 21:E311. [PMID: 33466407 PMCID: PMC7796522 DOI: 10.3390/s21010311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/23/2023]
Abstract
Mass-spectrometry-based and X-ray fluorescence-based techniques have allowed the study of the distribution of Zn2+ ions at extracellular and intracellular levels over the past few years. However, there are some issues during purification steps, sample preparation, suitability for quantification, and the instruments' availability. Therefore, work on fluorescent sensors based on 8-aminoquinoline as tools to detect Zn2+ ions in environmental and biological applications has been popular. Introducing various carboxamide groups into an 8-aminoquinoline molecule to create 8-amidoquinoline derivatives to improve water solubility and cell membrane permeability is also a recent trend. This review aims to present a general overview of the fluorophore 8-aminoquinoline and its derivatives as Zn2+ receptors for zinc sensor probes. Various fluorescent chemosensor designs based on 8-amidoquinoline and their effectiveness and potential as a recognition probe for zinc analysis were discussed. Based on this review, it can be concluded that derivatives of 8-amidoquinoline have vast potential as functional receptors for zinc ions primarily because of their fast reactivity, good selectivity, and bio-compatibility, especially for biological applications. To better understand the Zn2+ ion fluorophores' function, diversity of the coordination complex and geometries need further studies. This review provides information in elucidating, designing, and exploring new 8-amidoquinoline derivatives for future studies for the improvement of chemosensors that are selective and sensitive to Zn2+.
Collapse
Affiliation(s)
- Nur Syamimi Mohamad
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.S.M.); (L.L.T.); (G.C.T.)
| | - Nur Hanis Zakaria
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.Z.); (L.Y.H.)
| | - Nurulhaidah Daud
- Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.S.M.); (L.L.T.); (G.C.T.)
| | - Goh Choo Ta
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.S.M.); (L.L.T.); (G.C.T.)
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.Z.); (L.Y.H.)
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.Z.); (L.Y.H.)
| |
Collapse
|
8
|
Brahma R, Baruah JB. Intrinsic structural features of coordination polymers make an impact on dye selectivity. CrystEngComm 2021. [DOI: 10.1039/d1ce00481f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Differences in hydrogen-bonded assembly help in recognition of dyes.
Collapse
Affiliation(s)
- Rinki Brahma
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati – 781 039
- India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati – 781 039
- India
| |
Collapse
|