1
|
Kamalarasan V, Venkateswaran C. Fluorescence Carbon Dots from Blood-Berries for Sensing Cr 6+ Ions in Water and Application in White Light Emitting Diode. J Fluoresc 2024:10.1007/s10895-024-03916-1. [PMID: 39254817 DOI: 10.1007/s10895-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Conventional techniques for identifying heavy metal ions in water are laborious and time-consuming. Therefore, it is necessary to create innovative sensing technologies that can detect with greater sensitivity and speed. Although there have been reports of optical-based assays utilising fluorescent nanomaterials, these assays usually rely on variations in signal strength. However, this approach has significant drawbacks when it comes to environmental monitoring. Fluorescence carbon dots (CDs) have been prepared by facile synthesis from Blood berries. A homemade heavy metal optical detector is constructed to accurately identify heavy metal ions, exclusively Cr6+ ions in a water medium. Their optical emission signature varies based on the specific chromium ions in solution, and the emission intensity also changes depending on its concentration. The quenching behaviour is attributed to the interaction between the metallic cations and the fluorescent surface states of the carbon dots. Another application is the encapsulation of CDs in PVDF polymer to form a flexible film and use it as a phosphor for LED conversion.
Collapse
Affiliation(s)
- V Kamalarasan
- Department of Nuclear Physics, University of Madras, Guindy campus, Chennai, 600025, Tamil Nadu, India
| | - C Venkateswaran
- Department of Nuclear Physics, University of Madras, Guindy campus, Chennai, 600025, Tamil Nadu, India.
| |
Collapse
|
2
|
Ma X, Zhang X, Gao M, Wang Y, Li G. Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4167. [PMID: 39274557 PMCID: PMC11395812 DOI: 10.3390/ma17174167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
The green production of nanocomposites holds great potential for the development of new materials. Graphene is an important class of carbon-based materials. Despite its high carrier mobility, it has low light absorption and is a zero-bandgap material. In order to tune the bandgap and improve the light absorption, S, N co-doped low-dimensional C/C nanocomposites with polymer and graphene oxide nanoribbons (the graphene oxide nanoribbons were prepared by open zipping of carbon nanotubes in a previous study) were synthesized by one-pot carbonization through dimensional-interface and phase-interface tailoring of nanocomposites in this paper. The resulting C/C nanocomposites were coated on untreated A4 printing paper and the optoelectronic properties were investigated. The results showed that the S, N co-doped C/C nanoribbon/carbon dot hybrid exhibited enhanced photocurrent signals of the typical 650, 808, 980, and 1064 nm light sources and rapid interfacial charge transfer compared to the N-doped counterpart. These results can be attributed to the introduction of lone electron pairs of S, N elements, resulting in more transition energy and the defect passivation of carbon materials. In addition, the nanocomposite also exhibited some electrical switching response to the applied strain. The photophysical and doping mechanisms are discussed. This study provides a facile and green chemical approach to prepare hybrid materials with external stimuli response and multifunctionality. It provides some valuable information for the design of C/C functional nanocomposites through dimensional-interface and phase-interface tailoring and the interdisciplinary applications.
Collapse
Affiliation(s)
- Xingfa Ma
- School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China
| | - Xintao Zhang
- School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China
| | - Mingjun Gao
- School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China
| | - You Wang
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Guang Li
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Ma X, Gao M, Zhang X, Wang Y, Li G. Polymer-Derived Carbon Nanofiber and Its Photocurrent-Switching Responses of Carbon Nanofiber/Cu Nanocomposite in Wide Ranges of Excited Light Wavelength. Polymers (Basel) 2023; 15:3528. [PMID: 37688154 PMCID: PMC10489919 DOI: 10.3390/polym15173528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Transformation into electric or photoelectric functional composite from non-conjugated polymers is a great challenge due to the presence of a large number of locative states. In this paper, carbon nanofiber was synthesized via hydrothermal carbonization utilizing carboxymethyl cellulose as a precursor, and the carbon nanofiber/Cu nanocomposite was constructed for defect passivation. The results indicated that the resulting nanocomposites exhibited good absorbance in visible light range and NIR (near-infrared). The photoconductive responses to typical weak visible light (650 nm et al.) and NIR (808, 980, and 1064 nm) were studied based on Au gap electrodes on flexible polymer substrates. The results exhibited that the nanocomposite's solid thick film showed photocurrent-switching behaviors to visible light and NIR, the switch-ratio was depending on the wavelengths and power of incident lights. The positive and negative photoconductance responses phenomenon was observed in different compositions and changing excited wavelengths. Their photophysical mechanisms were discussed. This illustrated that the nanocomposites easily produce free electrons and holes via low power of incident light. Free electrons and holes could be utilized for different purposes in multi-disciplinary fields. It would be a potential application in broadband flexible photodetectors, artificial vision, simulating retina, and bio-imaging from visible light to NIR. This is a low-cost and green approach to obtain nanocomposite exhibiting good photocurrent response from the visible range to NIR.
Collapse
Affiliation(s)
- Xingfa Ma
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - Mingjun Gao
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - Xintao Zhang
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - You Wang
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.L.)
| | - Guang Li
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.L.)
| |
Collapse
|
4
|
Li Z, Zhou Q, Li S, Liu M, Li Y, Chen C. Carbon dots fabricated by solid-phase carbonization using p-toluidine and l-cysteine for sensitive detection of copper. CHEMOSPHERE 2022; 308:136298. [PMID: 36064008 DOI: 10.1016/j.chemosphere.2022.136298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a label-free "turn off" fluorescent sensor has been resoundingly fabricated using carbon dots (CDs) for ultrasensitive detection of copper ions (Cu2+). CDs are prepared by solid phase carbonization method using p-toluidine and l-cysteine as the precursors. The synthesized CDs exhibited the highest fluorescence intensity with excitation and emission wavelengths set at 300 nm and 400 nm, respectively. The CDs were selective and sensitive to Cu2+ due to the static quenching mechanism. The concentration of CDs, and solution pH and incubation time were important parameters for the developed sensor. The experimental results showed that 20 mgL-1 was enough for the analysis. As the solution pH was concerned, it was apparent that the sensor was endowed with an excellent response signal to Cu2+ and provided high sensitivity at pH 12. The interaction occurred very quickly, and the incubation time could be set at 1 min. The sensor provided a two-stage calibration curve to Cu2+ in the range of 0.05-0.7 and 0.7-4 μM with a limit of detection of 47 nM. The obtained results clearly demonstrated that this facile method was fast, reliable and selective for detecting Cu2+, which would explore a prospective strategy for developing effective and low-cost sensors for monitoring metal ions in aqueous environments.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
5
|
Liu H, Chen N, Peng C, Zhang S, Liu T, Song P, Zhong G, Liu H. Diisocyanate-Induced Dynamic Vulcanization of Difunctional Fatty Acids toward Mechanically Robust PLA Blends with Enhanced Luminescence Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongzhi Liu
- School of Materials Science and Engineering, NingboTech University, No. 1 Qianhu South Road, Ningbo 315100, P. R. China
- College of Engineering, Zhejiang A&F University, Lin′an, Hangzhou 311300, P. R. China
| | - Ning Chen
- College of Engineering, Zhejiang A&F University, Lin′an, Hangzhou 311300, P. R. China
| | - Changqing Peng
- School of Materials Science and Engineering, NingboTech University, No. 1 Qianhu South Road, Ningbo 315100, P. R. China
| | - Shuai Zhang
- School of Materials Science and Engineering, NingboTech University, No. 1 Qianhu South Road, Ningbo 315100, P. R. China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pingan Song
- School of Agriculture and Environmental Science & Centre for Future Materials, University of Southern Queensland, Brisbane 4300, QLD, Australia
| | - Guolun Zhong
- School of Materials Science and Engineering, NingboTech University, No. 1 Qianhu South Road, Ningbo 315100, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
6
|
Döring A, Ushakova E, Rogach AL. Chiral carbon dots: synthesis, optical properties, and emerging applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:75. [PMID: 35351850 PMCID: PMC8964749 DOI: 10.1038/s41377-022-00764-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 05/05/2023]
Abstract
Carbon dots are luminescent carbonaceous nanoparticles that can be endowed with chiral properties, making them particularly interesting for biomedical applications due to their low cytotoxicity and facile synthesis. In recent years, synthetic efforts leading to chiral carbon dots with other attractive optical properties such as two-photon absorption and circularly polarized light emission have flourished. We start this review by introducing examples of molecular chirality and its origins and providing a summary of chiroptical spectroscopy used for its characterization. Then approaches used to induce chirality in nanomaterials are reviewed. In the main part of this review we focus on chiral carbon dots, introducing their fabrication techniques such as bottom-up and top-down chemical syntheses, their morphology, and optical/chiroptical properties. We then consider emerging applications of chiral carbon dots in sensing, bioimaging, and catalysis, and conclude this review with a summary and future challenges.
Collapse
Affiliation(s)
- Aaron Döring
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Elena Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| |
Collapse
|
7
|
Mao JY, Unnikrishnan B, Chu HW, Harroun SG, Chen YR, Wu AT, Chang HT, Lin HJ, Huang CC. Thermally driven formation of polyphenolic carbonized nanogels with high anticoagulant activity from polysaccharides. Biomater Sci 2021; 9:4679-4690. [PMID: 34018502 DOI: 10.1039/d1bm00402f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have demonstrated that alginate with negligible anticoagulant activity can be converted into carbonized nanogels with potent anticoagulant activity through a solid-state heating process. The conversion of alginate into graphene-like nanosheet (GNS)-embedded polyphenolic-alginate nanogels (GNS/Alg-NGs) has been carried out through condensation and carbonization processes. The GNS/Alg-NGs exhibit much stronger anticoagulant activity (>520-fold) compared to untreated alginate, mainly because their polyphenolic structures have a high binding affinity [dissociation constant (Kd) = 2.1 × 10-10 M] toward thrombin. In addition, the thrombin clotting time delay caused by the GNS/Alg-NGs is 10-fold longer than that of natural polyphenolic compounds, such as quercetin, catechin, naringenin, caffeic acid, and ferulic acid. The thrombin- or kaolin-activated thromboelastography of whole-blood coagulation reveals that the GNS/Alg-NGs display a much stronger anticoagulant ability than that of untreated alginate and naturally sulfated polysaccharides (fucoidan). The GNS/Alg-NGs exhibit superior biocompatibility and anticoagulant activity, as observed with an in vivo rat model, revealing their potential as a blood thinner for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan. and Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan and Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - An-Tai Wu
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan. and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan. and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
8
|
Das S, Ngashangva L, Goswami P. Carbon Dots: An Emerging Smart Material for Analytical Applications. MICROMACHINES 2021; 12:84. [PMID: 33467583 PMCID: PMC7829846 DOI: 10.3390/mi12010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD's remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD's material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed.
Collapse
Affiliation(s)
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; (S.D.); (L.N.)
| |
Collapse
|
9
|
Fernandes RF, Paganoto GT, Temperini MLA. Non-traditional intrinsic luminescence from non-conjugated polymer dots: designing a hybrid biomaterial. Polym Chem 2021. [DOI: 10.1039/d1py01104a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an eco-friendly and facile synthesis of nitrogen-containing non-conjugated polymer dots (NCPD) with optimal blue emission is reported from the biopolymer β-glucan with a peptide–polysaccharide linkage (namely NH2-β-glucan).
Collapse
Affiliation(s)
- Rafaella F. Fernandes
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Giordano T. Paganoto
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Marcia L. A. Temperini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| |
Collapse
|
10
|
Multicolor nitrogen dots for rapid detection of thiram and chlorpyrifos in fruit and vegetable samples. Anal Chim Acta 2020; 1136:72-81. [PMID: 33081951 DOI: 10.1016/j.aca.2020.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
The development of sensitive fluorescence sensors and efficient preparation of samples is a challenge in the detection of pesticides in complex samples. In this study, multicolor nitrogen dots (M-Ndots) were synthesised via microwave irradiation at 140 °C for 10 min with 5-amino-1H-tetrazole and p-phenylenediamine as precursors, which have a high fluorescence quantum yield of up to 31%. Furthermore, the M-Ndots were employed as fluorescence sensors for pesticide detection by being combined with a gas membrane separation device, to eliminate the interference from the complex sample matrix. In this process, the M-Ndots were used for sensing thiram and chlorpyrifos through their affinities to Cu2+ and Fe3+, respectively. Because thiram could decompose into volatile CS2, its derivate was sensed using the fluorescence of M-Ndots via a complexation reaction with Cu2+. Chlorpyrifos, due to its volatility, can reduce the Fe3+ ion by inhibiting the activity of acetylcholinesterase, which produces H2O2 to oxidise Fe2+. In a real application, the time consumption for 96 samples was less than 30 min in one run of the gas membrane separation device. The recoveries for thiram and chlorpyrifos ranged from 90.0% to 115.0%, and the analytical results were validated using LC-MS/MS methods, with relative errors ranging from -7.4% to 10.1%.
Collapse
|