1
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
2
|
Marotta L, Rossi S, Ibba R, Brogi S, Calderone V, Butini S, Campiani G, Gemma S. The green chemistry of chalcones: Valuable sources of privileged core structures for drug discovery. Front Chem 2022; 10:988376. [PMID: 36172001 PMCID: PMC9511966 DOI: 10.3389/fchem.2022.988376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
The sustainable use of resources is essential in all production areas, including pharmaceuticals. However, the aspect of sustainability needs to be taken into consideration not only in the production phase, but during the whole medicinal chemistry drug discovery trajectory. The continuous progress in the fields of green chemistry and the use of artificial intelligence are contributing to the speed and effectiveness of a more sustainable drug discovery pipeline. In this light, here we review the most recent sustainable and green synthetic approaches used for the preparation and derivatization of chalcones, an important class of privileged structures and building blocks used for the preparation of new biologically active compounds with a broad spectrum of potential therapeutic applications. The literature here reported has been retrieved from the SciFinder database using the term "chalcone" as a keyword and filtering the results applying the concept: "green chemistry", and from the Reaxys database using the keywords "chalcone" and "green". For both databases the time-frame was 2017-2022. References were manually selected based on relevance.
Collapse
Affiliation(s)
- Ludovica Marotta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Roberta Ibba
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
4
|
Koifman OI, Ageeva TA. Main Strategies for the Synthesis of meso-Arylporphyrins. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [PMCID: PMC9156840 DOI: 10.1134/s1070428022040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
meso-Arylporphyrins as most accessible tetrapyrrole macroheterocycles have always been the focus of attention from researchers concerned with practically useful properties of these compounds. The first syntheses of meso-arylporphyrins date back to about 90 years ago. Up to now, the yields of these compounds have been improved from 5 to 80%. The present review analyzes different ways and strategies for the synthesis of meso-aryl-substituted porphyrins. The most efficient methods that can be scaled up to an industrial level have been identified.
Collapse
Affiliation(s)
- O. I. Koifman
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - T. A. Ageeva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
5
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
6
|
André V, Duarte MT, Gomes CSB, Sarraguça MC. Mechanochemistry in Portugal-A Step towards Sustainable Chemical Synthesis. Molecules 2021; 27:241. [PMID: 35011471 PMCID: PMC8746420 DOI: 10.3390/molecules27010241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry. The area with the most increased development is the synthesis of multicomponent crystal forms, with several groups synthesizing solvates, salts, and cocrystals in which the main objective was to improve physical properties of the active pharmaceutical ingredients. Recently, non-crystalline materials, such as ionic liquids and amorphous solid dispersions, have also been studied using mechanochemical methods. An area that is in expansion is the use of mechanochemical synthesis of bioinspired metal-organic frameworks with an emphasis in antibiotic coordination frameworks. The use of mechanochemistry for catalysis and organic and inorganic synthesis has also grown due to the synthetic advantages, ease of synthesis, scalability, sustainability, and, in the majority of cases, the superior properties of the synthesized materials. It can be easily concluded that mechanochemistry is expanding in Portugal in diverse research areas.
Collapse
Affiliation(s)
- Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais 1, 1049-003 Lisbon, Portugal
| | - M. Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Clara S. B. Gomes
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mafalda C. Sarraguça
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Modern Methods for the Sustainable Synthesis of Metalloporphyrins. Molecules 2021; 26:molecules26216652. [PMID: 34771061 PMCID: PMC8588080 DOI: 10.3390/molecules26216652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloporphyrins are involved in many and diverse applications that require the preparation of these compounds in an efficient manner, which nowadays, also involves taking into consideration sustainability issues. In this context, we use ball milling mechanochemistry and sonochemistry for the rational development of synthetic strategies for the sustainable preparation of metalloporphyrins. Zinc, copper, cobalt and palladium complexes of hydrophobic porphyrins were obtained in high yields and under mechanical action with a moderate excess of the metal salt, without any solvent or additive. Sonochemistry prove to be a good alternative for the preparation of metal complexes of water-soluble porphyrins in good yields and short reaction times. Both strategies have good sustainability scores, close to the ideal values, which is useful in comparing and helping to choose the more adequate method.
Collapse
|
8
|
Schumacher C, Molitor C, Smid S, Truong KN, Rissanen K, Bolm C. Mechanochemical Syntheses of N-Containing Heterocycles with TosMIC. J Org Chem 2021; 86:14213-14222. [PMID: 34405999 DOI: 10.1021/acs.joc.1c01529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mechanochemical van Leusen pyrrole synthesis with a base leads to 3,4-disubstitued pyrroles in moderate to excellent yields. The developed protocol is compatible with a range of electron-withdrawing groups and can also be applied to the synthesis of oxazoles. Attempts to mechanochemically convert the resulting pyrroles into porphyrins proved to be difficult.
Collapse
Affiliation(s)
- Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Claude Molitor
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Sabrina Smid
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Khai-Nghi Truong
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, Survontie 9 B, FI-40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, Survontie 9 B, FI-40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
10
|
Son DH, Kim GY, Jeong JE, Lee SH, Park YI, Kong H, Cheong IW, Kim JC. Influence of Material Properties on the Damage-Reporting and Self-Healing Performance of a Mechanically Active Dynamic Network Polymer in Coating Applications. Molecules 2021; 26:2468. [PMID: 33922672 PMCID: PMC8122913 DOI: 10.3390/molecules26092468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
We conducted a detailed investigation of the influence of the material properties of dynamic polymer network coatings on their self-healing and damage-reporting performance. A series of reversible polyacrylate urethane networks containing the damage-reporting diarylbibenzofuranone unit were synthesized, and their material properties (e.g., indentation modulus, hardness modulus, and glass-transition temperature) were measured conducting nanoindentation and differential scanning calorimetry experiments. The damage-reporting and self-healing performances of the dynamic polymer network coatings exhibited opposite tendencies with respect to the material properties of the polymer network coatings. Soft polymer network coatings with low glass-transition temperature (~10 °C) and indentation hardness (20 MPa) exhibited better self-healing performance (almost 100%) but two times worse damage-reporting properties than hard polymer network coatings with high glass-transition temperature (35~50 °C) and indentation hardness (150~200 MPa). These features of the dynamic polymer network coatings are unique; they are not observed in elastomers, films, and hydrogels, whereby the polymer networks are bound to the substrate surface. Evidence indicates that controlling the polymer's physical properties is a key factor in designing high-performance self-healing and damage-reporting polymer coatings based on mechanophores.
Collapse
Affiliation(s)
- Da Hae Son
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea; (D.H.S.); (G.Y.K.); (J.-E.J.); (S.-H.L.); (Y.I.P.); (H.K.)
| | - Gi Young Kim
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea; (D.H.S.); (G.Y.K.); (J.-E.J.); (S.-H.L.); (Y.I.P.); (H.K.)
| | - Ji-Eun Jeong
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea; (D.H.S.); (G.Y.K.); (J.-E.J.); (S.-H.L.); (Y.I.P.); (H.K.)
| | - Sang-Ho Lee
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea; (D.H.S.); (G.Y.K.); (J.-E.J.); (S.-H.L.); (Y.I.P.); (H.K.)
| | - Young Il Park
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea; (D.H.S.); (G.Y.K.); (J.-E.J.); (S.-H.L.); (Y.I.P.); (H.K.)
| | - Hoyoul Kong
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea; (D.H.S.); (G.Y.K.); (J.-E.J.); (S.-H.L.); (Y.I.P.); (H.K.)
| | - In Woo Cheong
- School of Applied Chemistry, Kyungpook National University, Daegu 41566, Korea
| | - Jin Chul Kim
- Center for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea; (D.H.S.); (G.Y.K.); (J.-E.J.); (S.-H.L.); (Y.I.P.); (H.K.)
| |
Collapse
|
11
|
de Oliveira Lima Filho E, Malvestiti I. Mechanochemical Thiocyanation of Aryl Compounds via C-H Functionalization. ACS OMEGA 2020; 5:33329-33339. [PMID: 33403295 PMCID: PMC7774286 DOI: 10.1021/acsomega.0c05131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Aryl thiocyanate compounds are important building blocks for the synthesis of bioactive compounds and intermediates for several functional groups. Reported thiocyanation reactions via C-H functionalization have limited substrate scope and low RME. The ball-milling method reported here uses ammonium persulfate and ammonium thiocyanate as reagents and silica as a grinding auxiliary. It afforded aryl thiocyanates with moderate to excellent yields for a wide variety of aryl compounds (36 examples, 8-96% yield), such as anilines, phenols, anisoles, thioanisole, and indole, thus tolerating substrates with sensitive functional groups. New products such as benzo[d][1,3]oxathiol-2-ones were obtained with C-4 substituted phenols. Thus, to our knowledge, we report, for the first time, aryl thiocyanation reaction by ball-milling at room temperature and solvent-free conditions, with short reaction times and no workup. Analysis of several mass-based green metrics indicates that it is an efficient greener method.
Collapse
Affiliation(s)
- Edson de Oliveira Lima Filho
- Departamento de Química Fundamental—CCEN—Universidade
Federal de Pernambuco, Recife 50740-560, Pernambuco, Brazil
| | - Ivani Malvestiti
- Departamento de Química Fundamental—CCEN—Universidade
Federal de Pernambuco, Recife 50740-560, Pernambuco, Brazil
| |
Collapse
|
12
|
Bais J, Benedetti F, Berti F, Cerminara I, Drioli S, Funicello M, Regini G, Vidali M, Felluga F. One Pot Synthesis of Micromolar BACE-1 Inhibitors Based on the Dihydropyrimidinone Scaffold and Their Thia and Imino Analogues. Molecules 2020; 25:molecules25184152. [PMID: 32927879 PMCID: PMC7571164 DOI: 10.3390/molecules25184152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/05/2022] Open
Abstract
A library of dihydropyrimidinones was synthesized via a “one-pot” three component Biginelli reaction using different aldehydes in combination with β-dicarbonyl compounds and urea. Selected 2-thiooxo and 2-imino analogs were also obtained with the Biginelli reaction from thiourea and guanidine hydrochloride, respectively. The products were screened in vitro for their β-secretase inhibitory activity. The majority of the compounds resulted to be active, with IC50 in the range 100 nM–50 μM.
Collapse
Affiliation(s)
- Jessica Bais
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy; (J.B.); (F.B.); (F.B.); (S.D.); (G.R.); (M.V.)
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy; (J.B.); (F.B.); (F.B.); (S.D.); (G.R.); (M.V.)
| | - Federico Berti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy; (J.B.); (F.B.); (F.B.); (S.D.); (G.R.); (M.V.)
| | - Iole Cerminara
- Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.C.); (M.F.)
| | - Sara Drioli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy; (J.B.); (F.B.); (F.B.); (S.D.); (G.R.); (M.V.)
| | - Maria Funicello
- Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.C.); (M.F.)
| | - Giorgia Regini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy; (J.B.); (F.B.); (F.B.); (S.D.); (G.R.); (M.V.)
| | - Mattia Vidali
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy; (J.B.); (F.B.); (F.B.); (S.D.); (G.R.); (M.V.)
| | - Fulvia Felluga
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy; (J.B.); (F.B.); (F.B.); (S.D.); (G.R.); (M.V.)
- Correspondence:
| |
Collapse
|
13
|
Sequential catalytic carbonylation reactions for sustainable synthesis of biologically relevant entities. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|