1
|
Ma B, Chen N, Cai W, Shao X. Understanding the protein conformation transition within polymer hydrogels using a near-infrared water spectroscopy probe. Int J Biol Macromol 2024; 290:138995. [PMID: 39706456 DOI: 10.1016/j.ijbiomac.2024.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
For understanding the behavior of the active substance in vivo, the near-infrared (NIR) spectral variations of ovalbumin (OVA) loaded in poly(N, N-dimethyl acrylamide) (PDMAA) hydrogel with temperature were investigated. Analyzing the spectra with improved resolution by continuous wavelet transform (CWT), the absorption variation of the peak at 4851 cm-1 arising from the α-helix of OVA with temperature was studied. The results show that a sharp decrease occurs at a lower temperature in PDMAA hydrogel, indicating that the unfolding of OVA in PDMAA hydrogel is facilitated. On the other hand, the intensity changes for the hydrogen-bonded water were consistent with that for the protein, providing evidence for facilitating the unfolding. Furthermore, the spectral feature of a new water structure with two hydrogen bonds was obtained from the spectra of OVA loaded hydrogel by independent component analysis (ICA). By analyzing the difference of the water structure with temperature and the side chain of hydrogels, it is demonstrated that the water structure may be a double hydration water surrounding both the protein and the methyl groups of the hydrogel. The easy dissociation of the double hydration water may be a crucial factor in facilitating the unfolding of proteins within hydrogels.
Collapse
Affiliation(s)
- Biao Ma
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Nannan Chen
- Beijing Inno Medicine Co., LTD., Beijing 100124, PR China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China.
| |
Collapse
|
2
|
Liu L, Xu J, Huang X, Wang Y, Ma X, Wang X, Liu Y, Ren X, Li J, Wang Y, Zhou S, Yuan L. DHA dietary intervention caused different hippocampal lipid and protein profile in ApoE-/- and C57BL/6J mice. Biomed Pharmacother 2024; 177:117088. [PMID: 38971007 DOI: 10.1016/j.biopha.2024.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Changes in protein and lipid levels may occur in the Alzheimer's disease brain, and DHA can have beneficial effects on it. To investigate the impact of DHA dietary intervention on brain protein and lipid profile in ApoE-/- mice and C57 mice. METHOD Three-month-old ApoE-/- mice and C57 mice were randomly divided into two groups respectively, and fed with control diet and DHA-fortified diet for five months. Cortical TC, HDL-C and LDL-C levels and cholesterol metabolism-related protein expression were measured by ELISA or immunohistochemistry methods. Hippocampus were collected for proteomic and lipidomics analysis by LC-MS/MS and differential proteins and lipid metabolites were screened and further analyzed by GO functional annotation and KEGG pathway enrichment analysis. RESULTS DHA intervention decreased cortical TC level in both C57 and ApoE-/- mice (P < 0.05), but caused different change of cortical HDL-C, LDL-C level and LDL-C/HDL-C ratio in C57 and ApoE-/- mice (P < 0.05). Discrepant cortical and hippocampal LDLR, ABCG1, Lox1 and SORT1 protein expression was found between C57 and ApoE-/- mice (P < 0.05), and DHA treatment caused different changes of these proteins in C57 and ApoE-/- mice (P < 0.05). Differential hippocampal proteins and lipids profile were found in C57 and ApoE-/- mice before and after DHA treatment, which were mainly involved in vesicular transport and phospholipid metabolic pathways. CONCLUSION ApoE genetic defect caused abnormal cholesterol metabolism, and affected protein and lipid profile, as well as discrepant response of hippocampal protein and lipids profile in the brain of mice given DHA fortified diet intervention.
Collapse
Affiliation(s)
- Lu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jiahao Li
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yueyong Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK.
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases.
| |
Collapse
|
3
|
Mathes TG, Monirizad M, Ermis M, de Barros NR, Rodriguez M, Kraatz HB, Jucaud V, Khademhosseini A, Falcone N. Effects of amyloid-β-mimicking peptide hydrogel matrix on neuronal progenitor cell phenotype. Acta Biomater 2024; 183:89-100. [PMID: 38801867 PMCID: PMC11239292 DOI: 10.1016/j.actbio.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Self-assembling peptide-based hydrogels have become a highly attractive scaffold for three-dimensional (3D) in vitro disease modeling as they provide a way to create tunable matrices that can resemble the extracellular matrix (ECM) of various microenvironments. Alzheimer's disease (AD) is an exceptionally complex neurodegenerative condition; however, our understanding has advanced due to the transition from two-dimensional (2D) to 3D in vitro modeling. Nonetheless, there is a current gap in knowledge regarding the role of amyloid structures, and previously developed models found long-term difficulty in creating an appropriate model involving the ECM and amyloid aggregates. In this report, we propose a multi-component self-assembling peptide-based hydrogel scaffold to mimic the amyloid-beta (β) containing microenvironment. Characterization of the amyloid-β-mimicking hydrogel (Col-HAMA-FF) reveals the formation of β-sheet structures as a result of the self-assembling properties of phenylalanine (Phe, F) through π-π stacking of the residues, thus mimicking the amyloid-β protein nanostructures. We investigated the effect of the amyloid-β-mimicking microenvironment on healthy neuronal progenitor cells (NPCs) compared to a natural-mimicking matrix (Col-HAMA). Our results demonstrated higher levels of neuroinflammation and apoptosis markers when NPCs were cultured in the amyloid-like matrix compared to a natural brain matrix. Here, we provided insights into the impact of amyloid-like structures on NPC phenotypes and behaviors. This foundational work, before progressing to more complex plaque models, provides a promising scaffold for future investigations on AD mechanisms and drug testing. STATEMENT OF SIGNIFICANCE: In this study, we engineered two multi-component hydrogels: one to mimic the natural extracellular matrix (ECM) of the brain and one to resemble an amyloid-like microenvironment using a self-assembling peptide hydrogel. The self-assembling peptide mimics β-amyloid fibrils seen in amyloid-β protein aggregates. We report on the culture of neuronal progenitor cells within the amyloid-mimicking ECM scaffold to study the impact through marker expressions related to inflammation and DNA damage. This foundational work, before progressing to more complex plaque models, offers a promising scaffold for future investigations on AD mechanisms and drug testing.
Collapse
Affiliation(s)
- Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Middle East Technical University, Ankara 06800, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Marco Rodriguez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 2E4, Canada; Department of Physical and Environmental Science, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA.
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Ghassemi Z, Leach JB. Impact of Confinement within a Hydrogel Mesh on Protein Thermodynamic Stability and Aggregation Kinetics. Mol Pharm 2024; 21:1137-1148. [PMID: 38277273 DOI: 10.1021/acs.molpharmaceut.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Though protein stability and aggregation have been well characterized in dilute solutions, the influence of a confining environment that exists (e.g., in intercellular and tissue spaces and therapeutic formulations) on the protein structure is largely unknown. Herein, the effects of confinement on stability and aggregation were explored for proteins of different sizes, stability, and hydrophobicity when encapsulated in hydrophilic poly(ethylene glycol) hydrogels. Denaturation curves show linear correlations between confinement size (mesh size) and thermodynamic stability, i.e., unfolding free energy and surface area accessible for solvation (represented by m-value). Two clusters of protein types are identifiable from these correlations; the clusters are defined by differences in protein stability, surface area, and aggregation propensity. Proteins with higher stability, larger surface area, and lower aggregation propensity (e.g., lysozyme and myoglobin) are less affected by the confinement imposed by mesh size than proteins with lower stability, smaller surface area, and higher aggregation propensity (e.g., growth hormone and aldehyde dehydrogenase). According to aggregation kinetics measured by thioflavin T fluorescence, confinement in smaller mesh sizes resulted in slower aggregation rates than that in larger mesh sizes. Compared to that in buffer solution, the confinement of a hydrophobic protein (e.g., human insulin) in the hydrogels accelerates protein aggregation. Conversely, the confinement of a hydrophilic protein (e.g., human amylin) in the hydrogels decelerates or prevents aggregation, with the rates of aggregation inversely proportional to mesh size. These findings provide new insights into protein conformational stability in confined microenvironments relevant to various cellular, tissue, and therapeutics scenarios.
Collapse
Affiliation(s)
- Zahra Ghassemi
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Jennie B Leach
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
6
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
7
|
Wan C, Liu XQ, Chen M, Ma HH, Wu GL, Qiao LJ, Cai YF, Zhang SJ. Tanshinone IIA ameliorates Aβ transendothelial transportation through SIRT1-mediated endoplasmic reticulum stress. J Transl Med 2023; 21:34. [PMID: 36670462 PMCID: PMC9854034 DOI: 10.1186/s12967-023-03889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The disruption of blood-brain barrier (BBB), predominantly made up by brain microvascular endothelial cells (BMECs), is one of the characteristics of Alzheimer's disease (AD). Thus, improving BMEC function may be beneficial for AD treatment. Tanshinone IIA (Tan IIA) has been proved to ameliorate the cognitive dysfunction of AD. Herein, we explored how Tan IIA affected the function of BMECs in AD. METHODS Aβ1-42-treated brain-derived endothelium cells.3 (bEnd.3 cells) was employed for in vitro experiments. And we performed molecular docking and qPCR to determine the targeting molecule of Tan IIA on Sirtuins family. The APPswe/PSdE9 (APP/PS1) mice were applied to perform the in vivo experiments. Following the behavioral tests, protein expression was determined through western blot and immunofluorescence. The activities of oxidative stress-related enzymes were analyzed by biochemically kits. Nissl staining and thioflavin T staining were conducted to reflect the neurodegeneration and Aβ deposition respectively. RESULTS Molecular docking and qPCR results showed that Tan IIA mainly acted on Sirtuin1 (SIRT1) in Sirtuins family. The inhibitor of SIRT1 (EX527) was employed to further substantiate that Tan IIA could attenuate SIRT1-mediated endoplasmic reticulum stress (ER stress) in BMECs. Behavioral tests suggested that Tan IIA could improve the cognitive deficits in APP/PS1 mice. Tan IIA administration increased SIRT1 expression and alleviated ER stress in APP/PS1 mice. In addition, LRP1 expression was increased and RAGE expression was decreased after Tan IIA administration in both animals and cells. CONCLUSION Tan IIA could promote Aβ transportation by alleviating SIRT1-mediated ER stress in BMECs, which ameliorated cognitive deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Can Wan
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China ,grid.9227.e0000000119573309Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xiao-Qi Liu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Mei Chen
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Hui-Han Ma
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Guang-Liang Wu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Li-Jun Qiao
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Ye-Feng Cai
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Shi-Jie Zhang
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| |
Collapse
|
8
|
Drug diffusion in biomimetic hydrogels: importance for drug transport and delivery in non-vascular tumor tissue. Eur J Pharm Sci 2022; 172:106150. [DOI: 10.1016/j.ejps.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
|
9
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
10
|
Josephine Boder E, Banerjee IA. Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling. Bioengineering (Basel) 2021; 8:211. [PMID: 34940364 PMCID: PMC8698996 DOI: 10.3390/bioengineering8120211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Though Alzheimer's disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease's pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These "microphysiological" systems-in vitro human cell culture systems designed to replicate in vivo physiology-employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.
Collapse
Affiliation(s)
| | - Ipsita A. Banerjee
- Department of Chemistry, Fordham University, 441 E. Fordham Road, Bronx, NY 10458, USA;
| |
Collapse
|
11
|
Ghassemi Z, Ruesing S, Leach JB, Zustiak SP. Stability of proteins encapsulated in Michael-type addition polyethylene glycol hydrogels. Biotechnol Bioeng 2021; 118:4840-4853. [PMID: 34606089 PMCID: PMC8585711 DOI: 10.1002/bit.27949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 11/12/2022]
Abstract
Degradable polyethylene glycol (PEG) hydrogels are excellent vehicles for sustained drug release due to their biocompatibility, tunable physical properties, and customizable degradation. However, protein therapeutics are unstable under physiological conditions and releasing degraded or inactive therapeutics can induce immunogenic effects. While controlling protein release from PEG hydrogels has been extensively investigated, few studies have detailed protein stability long-term or under stress conditions. Here, lysozyme and alcohol dehydrogenase (ADH) stability were explored upon encapsulation in PEG hydrogels formed through Michael-type addition. The stability and structure of the two model proteins were monitored by measuring the free energy of unfolding and fluoresce quenching when confined in a hydrogel and compared to PEG solution and buffer. Hydrogels destabilized lysozyme structure at low denaturant concentrations but prevented complete unfolding at high concentrations. ADH was stabilized as the confining mesh size approached the protein radius of gyration. Both proteins retained enzymatic activity within the hydrogels under stress conditions, including denaturant, high temperature, and agitation. Conjugation between lysozyme and PEG-acrylate was identified at long reaction times but no conjugation was observed in the time required for complete gelation. Studies of protein stability in PEG hydrogels, as the one detailed here, can lead to designer technologies for the improved formulation, storage, and delivery of protein therapeutics.
Collapse
Affiliation(s)
- Zahra Ghassemi
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Sam Ruesing
- Biomedical Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA
| | - Jennie B Leach
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Silviya P Zustiak
- Biomedical Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA
| |
Collapse
|
12
|
Lee SY, Ma J, Khoo TS, Abdullah N, Nik Md Noordin Kahar NNF, Abdul Hamid ZA, Mustapha M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:735090. [PMID: 34733829 PMCID: PMC8558675 DOI: 10.3389/fbioe.2021.735090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Jingyi Ma
- Duke-NUS Medical School, Singapore, Singapore
| | - Tze Sean Khoo
- UKM Medical Molecular Biology Institute, National University of Malaysia, Bangi, Malaysia
| | - Norfadhilatuladha Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
13
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
14
|
Li A, Tyson J, Patel S, Patel M, Katakam S, Mao X, He W. Emerging Nanotechnology for Treatment of Alzheimer's and Parkinson's Disease. Front Bioeng Biotechnol 2021; 9:672594. [PMID: 34113606 PMCID: PMC8185219 DOI: 10.3389/fbioe.2021.672594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of the two most common neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's Disease (AD), are expected to rise alongside the progressive aging of society. Both PD and AD are classified as proteinopathies with misfolded proteins α-synuclein, amyloid-β, and tau. Emerging evidence suggests that these misfolded aggregates are prion-like proteins that induce pathological cell-to-cell spreading, which is a major driver in pathogenesis. Additional factors that can further affect pathology spreading include oxidative stress, mitochondrial damage, inflammation, and cell death. Nanomaterials present advantages over traditional chemical or biological therapeutic approaches at targeting these specific mechanisms. They can have intrinsic properties that lead to a decrease in oxidative stress or an ability to bind and disaggregate fibrils. Additionally, nanomaterials enhance transportation across the blood-brain barrier, are easily functionalized, increase drug half-lives, protect cargo from immune detection, and provide a physical structure that can support cell growth. This review highlights emergent nanomaterials with these advantages that target oxidative stress, the fibrillization process, inflammation, and aid in regenerative medicine for both PD and AD.
Collapse
Affiliation(s)
- Amanda Li
- Washington University School of Medicine, St. Louis, MO, United States
| | - Joel Tyson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Shivni Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meer Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sruthi Katakam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, China
| |
Collapse
|
15
|
Zhang Q, Willis-Fox N, Daly R. Capturing the value in printed pharmaceuticals - A study of inkjet droplets released from a polymer matrix. Int J Pharm 2021; 599:120436. [PMID: 33662470 DOI: 10.1016/j.ijpharm.2021.120436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
The future of personalised combination dosages will rely on the programming and delivery of multiple, separate APIs, their carrier fluids and excipients to a stable matrix, where each will remain separate until it is needed to be released. A recent technique has demonstrated how to print, capture and release materials from a polymer matrix using inkjet printing, a low cost and customisable technique. Droplets of a formulation are delivered to a fluid polymer matrix, where they are imbibed and remain pinned just under the upper surface, held in place by a balance of interfacial energies. Once the surrounding matrix cures and solidifies, the coating or matrix has trapped the formulation, but each drop has a small opening or pore to the outside that will allow delivery through diffusion. However, while the trapping mechanism has been explored in detail, to-date the release involved in this delivery has never been studied or quantified to the same level. Here we show a first study to quantify the release of a model system from a polymer matrix. An aqueous fluorescein solution is delivered and trapped, with release demonstrated to an agarose gel and aqueous environments. The work reveals that the balance of interfacial tensions prevents a reliable release until low concentrations of surfactant are included. This provides a route forward to further explore stabilising combinations of drugs within one material using a digitally controlled and affordable technique.
Collapse
Affiliation(s)
- Qingxin Zhang
- Institute for Manufacturing, Department of Engineering, University of Cambridge, UK
| | - Niamh Willis-Fox
- Institute for Manufacturing, Department of Engineering, University of Cambridge, UK
| | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge, UK.
| |
Collapse
|