1
|
Mitchell RJ, Havrylyuk D, Hachey AC, Heidary DK, Glazer EC. Photodynamic therapy photosensitizers and photoactivated chemotherapeutics exhibit distinct bioenergetic profiles to impact ATP metabolism. Chem Sci 2025; 16:721-734. [PMID: 39629492 PMCID: PMC11609979 DOI: 10.1039/d4sc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Energy is essential for all life, and mammalian cells generate and store energy in the form of ATP by mitochondrial (oxidative phosphorylation) and non-mitochondrial (glycolysis) metabolism. These processes can now be evaluated by extracellular flux analysis (EFA), which has proven to be an indispensable tool in cell biology, providing previously inaccessible information regarding the bioenergetic landscape of cell lines, complex tissues, and in vivo models. Recently, EFA demonstrated its utility as a screening tool in drug development, both by providing insights into small molecule-organelle interactions, and by revealing the peripheral and potentially undesired off-target effects small molecules have within cells. Surprisingly, technologies to quantify cellular bioenergetics have not been systematically applied in phototherapy development, leaving open several questions about how the mechanism of action of a compound can impact essential cellular functions. Here, we utilized the Seahorse analyzer to address this question for photosensitizers (PSs) for photodynamic therapy (PDT) and contrast these systems to molecules that photo-release a ligand and thus act as photocages or photoactivated chemotherapeutics (PACT), intending to understand the influence these two classes of compounds have on cellular bioenergetics. EFA results show that acute treatment of A549 lung adenocarcinoma cells with PDT agents induces a quiescent bioenergetic response as a result of mitochondrial respiration shutdown. The loss of oxidative phosphorylation is followed by disruption of glycolysis, which occurs after an initial increase in glycolytic respiration is unable to compensate for the interruption of the electron transport chain (ETC). In contrast, the PACT agents tested had little impact on cellular respiration, and the minor inhibition of these metabolic processes was not related to the mechanism of action, as reflected by a lack of correlation with photoejection efficiency. Notably, a system capable of both generating 1O2 and photo-releasing a ligand exhibited the dominant profile of a PDT agent and induced the quiescent bioenergetic state, indicating potential implications on cellular bioenergetics for so-called dual-action agents. These findings are presented with the aim to provide the necessary groundwork for expanding the application and utility of EFA to phototherapeutics and to highlight the role of metabolic alterations in PDT.
Collapse
|
2
|
Oliveira GFS, Gouveia FS, Andrade AL, de Vasconcelos MA, Teixeira EH, Palmeira-Mello MV, Batista AA, Lopes LGD, de Carvalho IMM, Sousa EHS. Minimal Functionalization of Ruthenium Compounds with Enhanced Photoreactivity against Hard-to-Treat Cancer Cells and Resistant Bacteria. Inorg Chem 2024; 63:14673-14690. [PMID: 39042379 PMCID: PMC11304396 DOI: 10.1021/acs.inorgchem.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Metallocompounds have emerged as promising new anticancer agents, which can also exhibit properties to be used in photodynamic therapy. Here, we prepared two ruthenium-based compounds with a 2,2'-bipyridine ligand conjugated to an anthracenyl moiety. These compounds coded GRBA and GRPA contain 2,2'-bipyridine or 1,10-phenathroline as auxiliary ligands, respectively, which provide quite a distinct behavior. Notably, compound GRPA exhibited remarkably high photoproduction of singlet oxygen even in water (ϕΔ = 0.96), almost twice that of GRBA (ϕΔ = 0.52). On the other hand, this latter produced twice more superoxide and hydroxyl radical species than GRPA, which may be due to the modulation of their excited state. Interestingly, GRPA exhibited a modest binding to DNA (Kb = 4.51 × 104), while GRBA did not show a measurable interaction only noticed by circular dichroism measurements. Studies with bacteria showed a great antimicrobial effect, including a synergistic effect in combination with commercial antibiotics. Besides that, GRBA showed very low or no cytotoxicity against four mammalian cells, including a hard-to-treat MDA-MB-231, triple-negative human breast cancer. Potent activities were measured for GRBA upon blue light irradiation, where IC50 of 43 and 13 nmol L-1 were seen against hard-to-treat triple-negative human breast cancer (MDA-MB-231) and ovarian cancer cells (A2780), respectively. These promising results are an interesting case of a simple modification with expressive enhancement of biological activity that deserves further biological studies.
Collapse
Affiliation(s)
- Geângela
de Fátima Sousa Oliveira
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Florencio Sousa Gouveia
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Alexandre Lopes Andrade
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | | | - Edson Holanda Teixeira
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | - Marcos V. Palmeira-Mello
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Alzir A. Batista
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Luiz Gonzaga de
França Lopes
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Idalina Maria Moreira de Carvalho
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| |
Collapse
|
3
|
Belletto D, Ponte F, Mazzone G, Sicilia E. A detailed density functional theory exploration of the photodissociation mechanism of ruthenium complexes for photoactivated chemotherapy. Dalton Trans 2024; 53:8243-8253. [PMID: 38654633 DOI: 10.1039/d4dt00834k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Polypyridyl Ru(II) complexes have attracted much attention due to their potential as light-activatable anticancer agents in photoactivated chemotherapy (PACT). The action of ruthenium-based PACT compounds relies on the breaking of a coordination bond between the metal center and an organic ligand via a photosubstitution reaction. Here, a detailed computational investigation of the photophysical properties of a novel trisheteroleptic ruthenium complex, [Ru(dpp)(bpy)(mtmp)]2+ (dpp = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2'-bipyridine and mtmp = 2-methylthiomethylpyridine), has been carried out by means of DFT and its time-dependent extension. All the aspects of the mechanism by which, upon light irradiation, the mtmp protecting group is released and the corresponding aquated complex, able to bind to DNA inducing cell death, is formed have been explored in detail. All the involved singlet and triplet states have been fully described, providing the calculation of the corresponding energy barriers. The involvement of solvent molecules in photosubstitution and the role played by pyridyl-thioether chelates as caging groups have been elucidated.
Collapse
Affiliation(s)
- Daniele Belletto
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
4
|
Robinette FN, Valentine NP, Sehler KM, Medeck AM, Reynolds KE, Lane SN, Price AN, Cavanaugh IG, Shell SM, Ashford DL. Modulating Excited State Properties and Ligand Ejection Kinetics in Ruthenium Polypyridyl Complexes Designed to Mimic Photochemotherapeutics. Inorg Chem 2024; 63:8426-8439. [PMID: 38662617 DOI: 10.1021/acs.inorgchem.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Ruthenium(II) polypyridyl complexes have gained significant interest as photochemotherapeutics (PCTs) due to their synthetic viability, strong light absorption, well understood excited state properties, and high phototoxicity indexes. Herein, we report the synthesis, characterization, electrochemical, spectrochemical, and preliminary cytotoxicity analyses of three series of ruthenium(II) polypyridyl complexes designed to mimic PCTs. The three series have the general structure of [Ru(bpy)2(N-N)]2+ (Series 1), [Ru(bpy)(dmb)(N-N)]2+ (Series 2), and [Ru(dmb)2(N-N)]2+ (Series 3, where N-N is a bidentate polypyridyl ligand, bpy = 2,2'-bipyridine, and dmb = 6,6'-dimethyl-2,2'-bipyridine). In the three series, the N-N ligand was systematically modified to incorporate increased conjugation and/or electronegative heteroatoms to increase dπ-π* backbonding, red-shifting the lowest energy metal-to-ligand charge transfer (MLCT) absorptions from λmax = 454 to λmax = 580 nm, nearing the therapeutic window for PCTs (600-1100 nm). In addition, steric bulk was systematically introduced through the series, distorting the Ru(II) octahedra, making the dissociative 3dd* state thermally accessible at room and body temperatures. This resulted in a 4 orders of magnitude increase in photoinduced ligand ejection kinetics, and demonstrates the ability to modulate both the MLCT* and dd* manifolds in the complexes, which is critical in PCT drug design. Preliminary cell viability assays suggest that the increased steric bulk to lower the 3dd* states may interfere with the cytotoxicity mechanism, limiting photoinitiated toxicity of the complexes. This work demonstrates the importance of understanding both the MLCT* and dd* manifolds and how they impact the ability of a complex to act as a PCT agent.
Collapse
Affiliation(s)
- Faith N Robinette
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Nathaniel P Valentine
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Konrad M Sehler
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Andrew M Medeck
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Keylon E Reynolds
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Skylar N Lane
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Averie N Price
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Ireland G Cavanaugh
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Steven M Shell
- Department of Natural Sciences, University of Virginia College at Wise, Wise, Virginia 24293, United States
| | - Dennis L Ashford
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| |
Collapse
|
5
|
Hirahara M, Iwamoto A, Teraoka Y, Mizuno Y, Umemura Y, Uekita T. Ruthenium Pyrazole Complexes: A Family of Highly Active Metallodrugs for Photoactivated Chemotherapy. Inorg Chem 2024; 63:1988-1996. [PMID: 38215027 DOI: 10.1021/acs.inorgchem.3c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Ruthenium complexes bearing bis pyrazole (pzH) ligands, cis-[Ru(bpy)2(R-pzH)2]2+ (bpy = 2,2'-bipyridine, R = -H, -Cl), were examined as photoactivated anticancer prodrugs. A dicationic pyrazole complex deprotonated to give monocationic pyrazole-pyrazolate complexes, cis-[Ru(bpy)2(R-pz-)(R-pzH)]+, in an aqueous solution with pKa values of 9.5 and 7.2 for R = H and R = Cl, respectively. Upon deprotonation, relative quantum yields of photosubstitution decreased while lipophilicity of the complexes increased according to the measurements of water-octanol coefficients. The ruthenium complex with 4-chloropyrazole ligands displayed high cytotoxicity upon light irradiation (IC50 = 0.060 ± 0.016 μM) toward lung cancer cells, which was 7 times higher than that in the dark (IC50 = 0.44 ± 0.07 μM). Additional experiments for the ruthenium R-pyrazole complexes indicated that (1) selective photodissociation of the 4-chloropyrazole ligand occurs from cis-[Ru(bpy)2(4-Clpz-)(4-ClpzH)]+, (2) photoinduced ligand dissociation is dominant rather than photoinduced generation of singlet oxygen (1O2), and (3) induction of cell death occurs via the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Aki Iwamoto
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Yuto Teraoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yuki Mizuno
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
6
|
Ciupa A. Novel pyrazoline and pyrazole "turn on" fluorescent sensors selective for Zn 2+/Cd 2+ at λem 480 nm and Fe 3+/Fe 2+ at λem 465 nm in MeCN. RSC Adv 2024; 14:3519-3524. [PMID: 38259996 PMCID: PMC10802262 DOI: 10.1039/d4ra00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
A small series of simple pyrazoline and pyrazole based sensors, all derived from the same chalcone precursors, were synthesised, characterised and screened for their fluorescence "turn on" properties in the presence of multiple metals. Pyrazole 8 displayed an excellent fluorescence profile with approx. 20× fold increase in λem 480 nm with Zn2+ compared to a 2.5× fold increase with Cd2+. Pyrazole 9 displayed a 30× fold increase at λem 465 nm for Fe3+ compared to Fe2+ with a Fe3+ limit of detection of 0.025 μM. The corresponding pyrazolines displayed contrasting properties with important implications for future pyrazoline and pyrazole sensor design.
Collapse
Affiliation(s)
- Alexander Ciupa
- Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| |
Collapse
|
7
|
Zhang L, Wang P, Zhou XQ, Bretin L, Zeng X, Husiev Y, Polanco EA, Zhao G, Wijaya LS, Biver T, Le Dévédec SE, Sun W, Bonnet S. Cyclic Ruthenium-Peptide Conjugates as Integrin-Targeting Phototherapeutic Prodrugs for the Treatment of Brain Tumors. J Am Chem Soc 2023. [PMID: 37379365 DOI: 10.1021/jacs.3c04855] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 μM for the binding of Λ-[1]Cl2 to αIIbβ3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.
Collapse
Affiliation(s)
- Liyan Zhang
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Peiyuan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Xiaolong Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yurii Husiev
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ehider A Polanco
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gangyin Zhao
- Leiden Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Lukas S Wijaya
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Sylvia E Le Dévédec
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
8
|
Liu T, Pan C, Shi H, Huang T, Huang YL, Deng YY, Ni WX, Man WL. Cytotoxic cis-ruthenium(III) bis(amidine) complexes. Dalton Trans 2023. [PMID: 37000490 DOI: 10.1039/d3dt00328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
In chemotherapy, the search for ruthenium compounds as alternatives to platinum compounds is proposed because of their unique properties. However, the geometry effect of ruthenium complexes is sparely investigated. In this paper, we report the synthesis of a series of bis(acetylacetonato)ruthenium(III) complexes bearing two amidines (1-) in a cis configuration. These complexes are highly cytotoxic against various cancer cell lines, including a cisplatin-resistant cell line. In vitro studies suggested that the representative complex can induce cell cycle G0/G1 phase arrest, decrease the mitochondrial membrane potential, elevate the intracellular reactive oxygen species level, and cause DNA damage and caspase-mediated mitochondrial pathway apoptosis in NCI-H460 cells. In vivo, it can effectively inhibit tumor xenograft growth in nude mouse models with no body weight loss. In combination with the reported trans-bis(amidine)ruthenium(III) complexes, we found that ruthenium(III) bis(amidine) complexes could be cytotoxic in both trans and cis geometries, which is in contrast to platinum-based compounds.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Chen Pan
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Huatian Shi
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
| | - Tao Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Yong-Liang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Yang-Yang Deng
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
| |
Collapse
|
9
|
Nongpiur CGL, Verma AK, Singh RK, Ghate MM, Poluri KM, Kaminsky W, Kollipara MR. Half-sandwich ruthenium(II), rhodium(III) and iridium(III) fluorescent metal complexes containing pyrazoline based ligands: DNA binding, cytotoxicity and antibacterial activities. J Inorg Biochem 2023; 238:112059. [PMID: 36345069 DOI: 10.1016/j.jinorgbio.2022.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
A series of nine new complexes of ruthenium(II), rhodium(III), and iridium(III) incorporated with pyrazoline-based ligands were synthesized and characterized by various spectroscopic techniques such as FTIR, 1H NMR, 13C NMR, UV-Vis spectroscopy, ESI-MS spectrometry and X-ray crystallographic studies. All the synthesized compounds were assessed for their antibacterial abilities against Gram-positive and Gram-negative bacterial strains. The compounds showed better antibacterial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus Thuringiensis), with activities superior to standard kanamycin. Antioxidant studies revealed the mild radical scavenging proficiency of the compounds. DNA binding studies using fluorescence spectroscopy showed that the compounds could bind to Salmon Milt DNA electrostatically via external contact and groove surface binding with moderate affinity. The synthesized complexes were tested for anticancer activity using cell cytotoxicity and apoptosis assays in Dalton's lymphoma (DL) cell lines. The findings were compared to cisplatin (the standard drug) under identical experimental conditions. The cell viability results showed that complex 7 induced higher cytotoxicity in the DL cell line than the other tested compounds. The results of the molecular docking analysis further suggest that selective complexes have complete contact with the active amino acids sites of anti-apoptotic Bcl-2 family protein.
Collapse
Affiliation(s)
| | | | - Rohit Kumar Singh
- Department of Zoology, Cotton University, Guwahati 781001, Assam, India
| | - Mayur Mohan Ghate
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
10
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
McCullough AB, Chen J, Valentine NP, Franklin TM, Cantrell AP, Darnell VM, Qureshi Q, Hanson K, Shell SM, Ashford DL. Balancing the interplay between ligand ejection and therapeutic window light absorption in ruthenium polypyridyl complexes. Dalton Trans 2022; 51:10186-10197. [PMID: 35735218 DOI: 10.1039/d2dt01237e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium polypyridyl complexes have gained significant interest as photochemotherapies (PCTs) where their excited-state properties play a critical role in the photo-cytotoxicity mechanism and efficacy. Herein we report a systematic electrochemical, spectrochemical, and photophysical analysis of a series of ruthenium(II) polypyridyl complexes of the type [Ru(bpy)2(N-N)]2+ (where bpy = 2,2'-bipyridine; N-N is a bidentate polypyridyl ligand) designed to mimic PCTs. In this series, the N-N ligand was modified through increased conjugation and/or incorporation of electronegative heteroatoms to shift the metal-to-ligand charge-transfer (MLCT) absorptions near the therapeutic window for PCTs (600-1100 nm) while incorporating steric bulk to trigger photoinduced ligand dissociation. The lowest energy MLCT absorptions were red-shifted from λmax = 454 nm to 564 nm, with emission energies decreasing from λmax = 620 nm to 850 nm. Photoinduced ligand ejection and temperature-dependent emission studies revealed an important interplay between red-shifting MLCT absorptions and accessing the dissociative 3dd* states, with energy barriers between the 3MLCT* and 3dd* states ranging from 850 cm-1 to 2580 cm-1 for the complexes measured. This work demonstrates the importance of understanding both the MLCT manifold and 3dd* state energy levels in the future design of ligands and complexes for PCT.
Collapse
Affiliation(s)
- Annie B McCullough
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Jiaqi Chen
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Nathaniel P Valentine
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Toney M Franklin
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Andrew P Cantrell
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Vayda M Darnell
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Qasim Qureshi
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Steven M Shell
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| | - Dennis L Ashford
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| |
Collapse
|
12
|
Chen Q, Cuello-Garibo JA, Bretin L, Zhang L, Ramu V, Aydar Y, Batsiun Y, Bronkhorst S, Husiev Y, Beztsinna N, Chen L, Zhou XQ, Schmidt C, Ott I, Jager MJ, Brouwer AM, Snaar-Jagalska BE, Bonnet S. Photosubstitution in a trisheteroleptic ruthenium complex inhibits conjunctival melanoma growth in a zebrafish orthotopic xenograft model. Chem Sci 2022; 13:6899-6919. [PMID: 35774173 PMCID: PMC9200134 DOI: 10.1039/d2sc01646j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022] Open
Abstract
In vivo data are rare but essential for establishing the clinical potential of ruthenium-based photoactivated chemotherapy (PACT) compounds, a new family of phototherapeutic drugs that are activated via ligand photosubstitution. Here a novel trisheteroleptic ruthenium complex [Ru(dpp)(bpy)(mtmp)](PF6)2 ([2](PF6)2, dpp = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, mtmp = 2-methylthiomethylpyridine) was synthesized and its light-activated anticancer properties were validated in cancer cell monolayers, 3D tumor spheroids, and in embryonic zebrafish cancer models. Upon green light irradiation, the non-toxic mtmp ligand is selectively cleaved off, thereby releasing a phototoxic ruthenium-based photoproduct capable notably of binding to nuclear DNA and triggering DNA damage and apoptosis within 24–48 h. In vitro, fifteen minutes of green light irradiation (21 mW cm−2, 19 J cm−2, 520 nm) were sufficient to generate high phototherapeutic indexes (PI) for this compound in a range of cancer cell lines including lung (A549), prostate (PC3Pro4), conjunctival melanoma (CRMM1, CRMM2, CM2005.1) and uveal melanoma (OMM1, OMM2.5, Mel270) cancer cell lines. The therapeutic potential of [2](PF6)2 was further evaluated in zebrafish embryo ectopic (PC3Pro4) or orthotopic (CRMM1, CRMM2) tumour models. The ectopic model consisted of red fluorescent PC3Pro4-mCherry cells injected intravenously (IV) into zebrafish, that formed perivascular metastatic lesions at the posterior ventral end of caudal hematopoietic tissue (CHT). By contrast, in the orthotopic model, CRMM1- and CRMM2-mCherry cells were injected behind the eye where they developed primary lesions. The maximally-tolerated dose (MTD) of [2](PF6)2 was first determined for three different modes of compound administration: (i) incubating the fish in prodrug-containing water (WA); (ii) injecting the prodrug intravenously (IV) into the fish; or (iii) injecting the prodrug retro-orbitally (RO) into the fish. To test the anticancer efficiency of [2](PF6)2, the embryos were treated 24 h after engraftment at the MTD. Optimally, four consecutive PACT treatments were performed on engrafted embryos using 60 min drug-to-light intervals and 90 min green light irradiation (21 mW cm−2, 114 J cm−2, 520 nm). Most importantly, this PACT protocol was not toxic to the zebrafish. In the ectopic prostate tumour models, where [2](PF6)2 showed the highest photoindex in vitro (PI > 31), the PACT treatment did not significantly diminish the growth of primary lesions, while in both conjunctival melanoma orthotopic tumour models, where [2](PF6)2 showed more modest photoindexes (PI ∼ 9), retro-orbitally administered PACT treatment significantly inhibited growth of the engrafted tumors. Overall, this study represents the first demonstration in zebrafish cancer models of the clinical potential of ruthenium-based PACT, here against conjunctival melanoma. A new tris-heteroleptic photoactivated chemotherapy ruthenium complex induces apoptosis upon green light activation in a zebrafish orthothopic conjunctival melanoma xenograft model.![]()
Collapse
Affiliation(s)
- Quanchi Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing China.,Institute of Biology, Leiden University Leiden The Netherlands +31-71-527-4980
| | - Jordi-Amat Cuello-Garibo
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Liyan Zhang
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Vadde Ramu
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Yasmin Aydar
- Institute of Biology, Leiden University Leiden The Netherlands +31-71-527-4980
| | - Yevhen Batsiun
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Sharon Bronkhorst
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Yurii Husiev
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Nataliia Beztsinna
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Lanpeng Chen
- Institute of Biology, Leiden University Leiden The Netherlands +31-71-527-4980
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstrasse 55 D-38106 Braunschweig Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstrasse 55 D-38106 Braunschweig Germany
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center Leiden The Netherlands
| | - Albert M Brouwer
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| |
Collapse
|
13
|
Papish ET, Oladipupo OE. Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds. Curr Opin Chem Biol 2022; 68:102143. [PMID: 35483128 DOI: 10.1016/j.cbpa.2022.102143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/03/2022]
Abstract
This review focuses on light-activated ruthenium anticancer compounds and the factors that influence which pathway is favored. Photodynamic therapy (PDT) is favored by π expansion and the presence of low-lying triplet excited states (e.g. 3MLCT, 3IL). Photoactivated chemotherapy (PACT) refers to light-driven ligand dissociation to give a toxic metal complex or a toxic ligand upon photo substitution. This process is driven by steric bulk near the metal center and weak metal-ligand bonds to create a low-energy 3MC state with antibonding character. With protic dihydroxybipyridine ligands, ligand charge can play a key role in these processes, with a more electron-rich deprotonated ligand favoring PDT and an electron-poor protonated ligand favoring PACT in several cases.
Collapse
Affiliation(s)
- Elizabeth T Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Olaitan E Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
14
|
Steinke SJ, Gupta S, Piechota EJ, Moore CE, Kodanko JJ, Turro C. Photocytotoxicity and photoinduced phosphine ligand exchange in a Ru(ii) polypyridyl complex. Chem Sci 2022; 13:1933-1945. [PMID: 35308843 PMCID: PMC8848995 DOI: 10.1039/d1sc05647f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
Two new tris-heteroleptic Ru(ii) complexes with triphenylphosphine (PPh3) coordination, cis-[Ru(phen)2(PPh3)(CH3CN)]2+ (1a, phen = 1,10-phenanthroline) and cis-[Ru(biq)(phen)(PPh3)(CH3CN)]2+ (2a, biq = 2,2'-biquinoline), were synthesized and characterized for photochemotherapeutic applications. Upon absorption of visible light, 1a exchanges a CH3CN ligand for a solvent water molecule. Surprisingly, the steady-state irradiation of 2a followed by electronic absorption and NMR spectroscopies reveals the photosubstitution of the PPh3 ligand. Phosphine photoinduced ligand exchange with visible light from a Ru(ii) polypyridyl complex has not previously been reported, and calculations reveal that it results from a trans-type influence in the excited state. Complexes 1a and 2a are not toxic against the triple negative breast cancer cell line MDA-MB-231 in the dark, but upon irradiation with blue light, the activity of both complexes increases by factors of >4.2 and 5.8, respectively. Experiments with PPh3 alone show that the phototoxicity observed for 2a does not arise from the released phosphine ligand, indicating the role of the photochemically generated ruthenium aqua complex on the biological activity. These complexes represent a new design motif for the selective release of PPh3 and CH3CN for use in photochemotherapy.
Collapse
Affiliation(s)
- Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Sayak Gupta
- Department of Chemistry, Wayne State University Detroit MI 48208 United States
| | - Eric J Piechota
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University Detroit MI 48208 United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| |
Collapse
|
15
|
Gu YQ, Shen WY, Yang QY, Chen ZF, Liang H. Ru(III) complexes with pyrazolopyrimidines as anticancer agents: bioactivities and the underlying mechanisms. Dalton Trans 2022; 51:1333-1343. [PMID: 34989734 DOI: 10.1039/d1dt02765d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three ruthenium(III) complexes with pyrazolopyrimidine [Ru(Ln)(H2O)Cl3] (1-3, n = 1-3) were prepared and characterized. These Ru(III) compounds show strong cytotoxicity against six cancer cell lines and low toxicity to normal human liver cells. Particularly, they exhibited stronger cytotoxicity to SK-OV-3 cells than cisplatin. Mechanism studies revealed that complex 1 inhibited tumor cell invasion and suppressed cell proliferation, induced apoptosis by elevating the levels of intracellular ROS (reactive oxygen species) and free calcium (Ca2+), and reduced mitochondrial membrane potential (ΔΨ). It also activated the caspase cascade, accompanied with upregulation of cytochrome c, Bax, p53, Apaf-1 and downregulation of Bcl-2. Moreover, complex 1 caused cell cycle arrest at S phase by inhibiting the expression of CDC 25, cyclin A2 and CDK 2 proteins, and induced DNA damage by interacting with DNA and inhibiting the topoisomerase I enzyme. Complex 1 exhibited efficient in vivo anticancer activity in a model of SK-OV-3 tumor xenograft.
Collapse
Affiliation(s)
- Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. .,School of Environment and Life Science, Nanning Normal University, Nanning, 530001, P. R China
| | - Wen-Ying Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Qi-Yuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
16
|
Oladipupo O, Brown SR, Lamb RW, Gray JL, Cameron CG, DeRegnaucourt AR, Ward NA, Hall JF, Xu Y, Petersen CM, Qu F, Shrestha AB, Thompson MK, Bonizzoni M, Webster CE, McFarland SA, Kim Y, Papish ET. Light-responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochem Photobiol 2022; 98:102-116. [PMID: 34411308 PMCID: PMC8810589 DOI: 10.1111/php.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2 Ru(n,n'-dhbp)]Cl2 with n = 6 and 4 in 1A and 2A , respectively). Full characterization data are reported for 1A and 2A and single crystal X-ray diffraction for 1A . Both 1A and 2A are diprotic acids. We have studied 1A , 1B , 2A , and 2B (B = deprotonated forms) by UV-vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy 3 MLCT states relative to the acidic forms. Complexes 1A and 2A produce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50 light values as low as 0.50 μM with PI values as high as >200 vs. MCF7. Computational studies were used to predict the energies of the 3 MLCT and 3 MC states. An inaccessible 3 MC state for 2B suggests a rationale for why photodissociation does not occur with the 4,4'-dhbp ligand. Low dark toxicity combined with an accessible 3 MLCT state for 1 O2 generation explains the excellent photocytotoxicity of 2.
Collapse
Affiliation(s)
- Olaitan Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Spenser R. Brown
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Robert W. Lamb
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Jessica L. Gray
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Alexa R. DeRegnaucourt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nicholas A. Ward
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - James Fletcher Hall
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yifei Xu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Courtney M. Petersen
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ambar B. Shrestha
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew K. Thompson
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
17
|
Chen Y, Bai L, Zhang P, Zhao H, Zhou Q. The Development of Ru(II)-Based Photoactivated Chemotherapy Agents. Molecules 2021; 26:5679. [PMID: 34577150 PMCID: PMC8465985 DOI: 10.3390/molecules26185679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
Photoactivated chemotherapy (PACT) is a novel cancer treatment method that has drawn increasing attention due to its high selectivity and low side effects by spatio-temporal control of irradiation. Compared with photodynamic therapy (PDT), oxygen-independent PACT is more suitable for treating hypoxic tumors. By finely tuning ligand structures and coordination configurations, many Ru(II) complexes can undergo photoinduced ligand dissociation, and the resulting Ru(II) aqua species and/or free ligands may have anticancer activity, showing their potential as PACT agents. In this mini-review, we summarized the progress in Ru(II)-based PACT agents, as well as challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Yongjie Chen
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Lijuan Bai
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Pu Zhang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Hua Zhao
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Busemann A, Flaspohler I, Zhou XQ, Schmidt C, Goetzfried SK, van Rixel VHS, Ott I, Siegler MA, Bonnet S. Ruthenium-based PACT agents based on bisquinoline chelates: synthesis, photochemistry, and cytotoxicity. J Biol Inorg Chem 2021; 26:667-674. [PMID: 34378103 PMCID: PMC8437835 DOI: 10.1007/s00775-021-01882-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
The known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates.
Collapse
Affiliation(s)
- Anja Busemann
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Ingrid Flaspohler
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Sina K Goetzfried
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Vincent H S van Rixel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Maxime A Siegler
- Small Molecule X-Ray Facility, Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
19
|
Elsabawy KM, Fallatah AM, Owidah ZO. Tailored assembly synthesis of newly functionalized ruthenium (II)-urea-linked-warfarin complex-leads to coordinated MOFs as anticancer. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Hachey AC, Havrylyuk D, Glazer EC. Biological activities of polypyridyl-type ligands: implications for bioinorganic chemistry and light-activated metal complexes. Curr Opin Chem Biol 2021; 61:191-202. [PMID: 33799087 DOI: 10.1016/j.cbpa.2021.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Polypyridyl coordinating ligands are common in metal complexes used in medicinal inorganic chemistry. These ligands possess intrinsic cytotoxicity, but detailed data on this phenomenon are sparse, and cytotoxicity values vary widely and are often irreproducible. To provide new insights into the biological effects of bipyridyl-type ligands and structurally related metal-binding systems, reports of free ligand cytotoxicity were reviewed. The cytotoxicity of 25 derivatives of 2,2'-bipyridine and 1,10-phenanthroline demonstrates that there is no correlation between IC50 values and ligand properties such as pKa, log D, polarizability volume, and electron density, as indicated by NMR shifts. As a result of these observations, as well as the various reported mechanisms of action of polypyridyl ligands, we offer the hypothesis that biological effects are governed by the availability of and affinity for specific metal ions within the experimental model.
Collapse
Affiliation(s)
- Austin C Hachey
- Department of Chemistry, The University of Kentucky, 505 Rose St, Lexington, KY 40506, USA
| | - Dmytro Havrylyuk
- Department of Chemistry, The University of Kentucky, 505 Rose St, Lexington, KY 40506, USA
| | - Edith C Glazer
- Department of Chemistry, The University of Kentucky, 505 Rose St, Lexington, KY 40506, USA.
| |
Collapse
|
21
|
Matiadis D, Karagiaouri M, Mavroidi B, Nowak KE, Katsipis G, Pelecanou M, Pantazaki A, Sagnou M. Synthesis and antimicrobial evaluation of a pyrazoline-pyridine silver(I) complex: DNA-interaction and anti-biofilm activity. Biometals 2020; 34:67-85. [PMID: 33156436 DOI: 10.1007/s10534-020-00263-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
The emergence of resistant bacterial strains mainly due to misuse of antibiotics has seriously affected our ability to treat bacterial illness, and the development of new classes of potent antimicrobial agents is desperately needed. In this study, we report the efficient synthesis of a new pyrazoline-pyridine containing ligand L1 which acts as an NN-donor for the formation of a novel silver (I) complex 2. The free ligand did not show antibacterial activity. High potency was exhibited by the complex against three Gram-negative bacteria, namely Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumanii with the minimum inhibitory concentration (MIC) ranging between 4 and 16 μg/mL (4.2-16.7 μM), and excellent activity against the fungi Candida albicans and Cryptococcus neoformans (MIC ≤ 0.25 μg/mL = 0.26 μM). Moreover, no hemolytic activity within the tested concentration range was observed. In addition to the planktonic growth inhibition, the biofilm formation of both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was significantly reduced by the complex at MIC concentrations in a dose-dependent manner for Pseudomonas aeruginosa, whereas a biphasic response was obtained for MRSA showing that the sub-MIC doses enhanced biofilm formation before its reduction at higher concentration. Finally, complex 2 exhibited strong DNA binding with a large drop in DNA viscosity indicating the absence of classical intercalation and suggesting the participation of the silver ion in DNA binding which may be related to its antibacterial activity. Taken together, the current results reveal that the pyrazoline-pyridine silver complexes are of high interest as novel antibacterial agents, justifying further in vitro and in vivo investigation.
Collapse
Affiliation(s)
- Dimitris Matiadis
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, Athens, Greece
| | - Maria Karagiaouri
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Barbara Mavroidi
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, Athens, Greece
| | - Katarzyna E Nowak
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236, Lodz, Poland
| | - Georgios Katsipis
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Pelecanou
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, Athens, Greece
| | - Anastasia Pantazaki
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Marina Sagnou
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, Athens, Greece.
| |
Collapse
|