1
|
Pfeifer BA, Beitelshees M, Hill A, Bassett J, Jones CH. Harnessing synthetic biology for advancing RNA therapeutics and vaccine design. NPJ Syst Biol Appl 2023; 9:60. [PMID: 38036580 PMCID: PMC10689799 DOI: 10.1038/s41540-023-00323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Recent global events have drawn into focus the diversity of options for combatting disease across a spectrum of prophylactic and therapeutic approaches. The recent success of the mRNA-based COVID-19 vaccines has paved the way for RNA-based treatments to revolutionize the pharmaceutical industry. However, historical treatment options are continuously updated and reimagined in the context of novel technical developments, such as those facilitated through the application of synthetic biology. When it comes to the development of genetic forms of therapies and vaccines, synthetic biology offers diverse tools and approaches to influence the content, dosage, and breadth of treatment with the prospect of economic advantage provided in time and cost benefits. This can be achieved by utilizing the broad tools within this discipline to enhance the functionality and efficacy of pharmaceutical agent sequences. This review will describe how synthetic biology principles can augment RNA-based treatments through optimizing not only the vaccine antigen, therapeutic construct, therapeutic activity, and delivery vector. The enhancement of RNA vaccine technology through implementing synthetic biology has the potential to shape the next generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | - Andrew Hill
- Pfizer, 66 Hudson Boulevard, New York, NY, 10001, USA
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
2
|
Akasaka T, Watanabe H, Ono M. In Vivo Near-Infrared Fluorescence Imaging Selective for Soluble Amyloid β Aggregates Using y-Shaped BODIPY Derivative. J Med Chem 2023; 66:14029-14046. [PMID: 37824378 DOI: 10.1021/acs.jmedchem.3c01057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Soluble amyloid β (Aβ) aggregates, suggested to be the most toxic forms of Aβ, draw attention as therapeutic targets and biomarkers of Alzheimer's disease (AD). As soluble Aβ aggregates are transient and diverse, imaging their diverse forms in vivo is expected to have a marked impact on research and diagnosis of AD. Herein, we report a near-infrared fluorescent (NIRF) probe, BAOP-16, targeting diverse soluble Aβ aggregates. BAOP-16, whose molecular shape resembles "y", showed a marked selective increase in fluorescence intensity upon binding to soluble Aβ aggregates in the near-infrared region and a high binding affinity for them. Additionally, BAOP-16 could detect Aβ oligomers in the brains of Aβ-inoculated model mice. In an in vivo fluorescence imaging study of BAOP-16, brains of AD model mice displayed significantly higher fluorescence signals than those of wild-type mice. These results indicate that BAOP-16 could be useful for the in vivo NIRF imaging of diverse soluble Aβ aggregates.
Collapse
Affiliation(s)
- Takahiro Akasaka
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Kong AHY, Wu AJ, Ho OKY, Leung MMK, Huang AS, Yu Y, Zhang G, Lyu A, Li M, Cheung KH. Exploring the Potential of Aptamers in Targeting Neuroinflammation and Neurodegenerative Disorders: Opportunities and Challenges. Int J Mol Sci 2023; 24:11780. [PMID: 37511539 PMCID: PMC10380291 DOI: 10.3390/ijms241411780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is the precursor for several neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Targeting neuroinflammation has emerged as a promising strategy to address a wide range of CNS pathologies. These NDDs still present significant challenges in terms of limited and ineffective diagnosis and treatment options, driving the need to explore innovative and novel therapeutic alternatives. Aptamers are single-stranded nucleic acids that offer the potential for addressing these challenges through diagnostic and therapeutic applications. In this review, we summarize diagnostic and therapeutic aptamers for inflammatory biomolecules, as well as the inflammatory cells in NDDs. We also discussed the potential of short nucleotides for Aptamer-Based Targeted Brain Delivery through their unique features and modifications, as well as their ability to penetrate the blood-brain barrier. Moreover, the unprecedented opportunities and substantial challenges of using aptamers as therapeutic agents, such as drug efficacy, safety considerations, and pharmacokinetics, are also discussed. Taken together, this review assesses the potential of aptamers as a pioneering approach for target delivery to the CNS and the treatment of neuroinflammation and NDDs.
Collapse
Affiliation(s)
- Anna Hau-Yee Kong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aston Jiaxi Wu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Olivia Ka-Yi Ho
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Maggie Ming-Ki Leung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Alexis Shiying Huang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Min Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - King-Ho Cheung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
4
|
Jia YL, Xu CH, Li XQ, Chen HY, Xu JJ. Visual analysis of Alzheimer disease biomarker via low-potential driven bipolar electrode. Anal Chim Acta 2023; 1251:340980. [PMID: 36925305 DOI: 10.1016/j.aca.2023.340980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Developing a simple, economical, and accurate diagnostic method has positive practical significance for the early prevention and intervention of Alzheimer's disease (AD). Herein, combining a closed bipolar electrode (BPE) chip with multicolor electrochemiluminescence (ECL) imaging technology, we constructed a low-voltage driven portable visualized ECL device for the early screening of AD. By introducing parallel resistance, the total resistance of the circuit was greatly reduced. A classical mixture of Ir(ppy)3 and Ru(bpy)32+ was used as multicolor emitters of the anode with TPrA as the co-reactant. Capture of amyloid-β (Aβ) through antigen-antibody recognition, and signal amplification by electroactive covalent organic frameworks (COF) probe at the cathode of BPE caused the significantly increased faradaic current. The electrical balance of the BPE system resulted in the change of the emission color from green to red at the anode. The ECL-BPE sensor shows good reproducibility and high sensitivity with detection limit of 1 pM by naked eye. The driving voltage is 3.0 V, which means the chip could be driven by two fifth batteries. The visualized ECL-BPE sensor provides a promising point-of-care testing (POCT) tool for the screening of Alzheimer's-related diseases in the early stage.
Collapse
Affiliation(s)
- Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Yang H, Mei J, Xu W, Ma X, Sun B, Ai H. Identification of the probable structure of the sAPPα-GABA BR1a complex and theoretical solutions for such cases. Phys Chem Chem Phys 2022; 24:12267-12280. [PMID: 35543350 DOI: 10.1039/d2cp00569g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid precursor protein (APP) is the core of the pathogenesis of Alzheimer's disease (AD). Existing studies have shown that the soluble secreted APP (sAPPα) fragment obtained from the hydrolysis of APP by α-secretase has a synaptic function. Thereinto, a nine-residue fragment (APP9mer) of the extension domain region of sAPPα can bind directly and selectively to the N-terminal sushi1 domain (SD1) of the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a) protein, which can influence synaptic transmission and plasticity by changing the GABABR1a conformation. APP9mer is a highly flexible, disordered region, and as such it is difficult to experimentally determine the optimal APPmer-SD1 binding complex. In this study we constructed two types of APP9mer-SD1 complexes through molecular docking and molecular dynamics simulation, aiming to explore the recognition function and mechanism of the specific binding of APP9mer with SD1, from which the most probable APPmer-SD1 model conformation is predicted. All the data from the analyses of RMSD, RMSF, PCA, DCCM and MM/PBSA binding energy as well as comparison with the experimental dissociation constant Kd suggest that 2NC is the most likely conformation to restore the crystal structure of the experimental APP9mer-SD1 complex. Of note, the key recognition residues of APP9mer are D24, D25, D27, W29 and W30, which mainly act on the 9-45 residue domain of SD1 (consisting of two loops and three short β-chains at the N-terminus of SD1). The mini-model with key residues identified establishes the molecular basis with deep insight into the interaction between APP and GABABR1a and provides a target for the development of therapeutic strategies for modulating GABABR1a-specific signaling in neurological and psychiatric disorders. More importantly, the study offers a theoretical solution for how to determine a biomolecular structure with a highly flexible, disordered fragment embedded within. The flexible fragment involved in a protein structure has to be deserted usually during the structural determination with experimental methods (e.g. X-ray crystallography, etc.).
Collapse
Affiliation(s)
- Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaohong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Bo Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
6
|
Portable electrochemical micro-workstation platform for simultaneous detection of multiple Alzheimer's disease biomarkers. Mikrochim Acta 2022; 189:91. [PMID: 35129691 DOI: 10.1007/s00604-022-05199-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease, as a most prevalent type of dementia, is quickly becoming one of the most expensive, lethal, and burdening diseases of this century. Though there are still no efficient therapies, early diagnosis and intervention are important directive significance to clinical works. Here, we develop a portable electrochemical micro-workstation platform consisting of an electrochemical micro-workstation and integrated electrochemical microarray for simultaneously detecting multiple AD biomarkers including Aβ40, Aβ42, T-tau, and P-tau181 in serum. The integrated electrochemical microarray is mainly used for droplet sample manipulation and signal generation. The micro-workstation can regulate signals and transfer the signals to a smartphone by Bluetooth embedded inside. This portable electrochemical micro-workstation platform exhibits excellent analysis performance. The LODs for Aβ40, Aβ42, T-tau, and P-tau181 are 0.125 pg/mL, 0.089 pg/mL, 0.142 pg/mL, and 0.176 pg/mL, respectively, which satisfies the needs of detecting AD biomarkers in serum. The combination of portable micro-workstation and integrated electrochemical microarray provides a promising strategy for the early diagnosis of Alzheimer's disease and personal healthcare.
Collapse
|
7
|
Zheng Y, Zhang L, Zhao J, Li L, Wang M, Gao P, Wang Q, Zhang X, Wang W. Advances in aptamers against Aβ and applications in Aβ detection and regulation for Alzheimer's disease. Theranostics 2022; 12:2095-2114. [PMID: 35265201 PMCID: PMC8899576 DOI: 10.7150/thno.69465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, causing profound social and economic implications. Early diagnosis and treatment of AD have faced great challenges due to the slow and hidden onset. β-amyloid (Aβ) protein has been considered an important biomarker and therapeutic target for AD. Therefore, non-invasive, simple, rapid and real-time detection methods for AD biomarkers are particularly favored. With the development of Aβ aptamers, the specific recognition between aptamers and Aβ plays a significant role in AD theranostics. On the one hand, aptamers are applied to construct biosensors for Aβ detection, which provides possibilities for early diagnosis of AD. On the other hand, aptamers are used for regulating Aβ aggregation process, which provides potential strategies for AD treatment. Many excellent reviews have summarized aptamers for neurodegenerative diseases or biosensors using specific recognition probes for Aβ detection applications in AD. In this review, we highlight the crucial role of the design, classification and applications of aptamers on Aβ detection as well as inhibition of Aβ aggregation for AD.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Peifeng Gao
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem 2022; 298:101478. [PMID: 34896392 PMCID: PMC8728582 DOI: 10.1016/j.jbc.2021.101478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Naotaka Izuo
- Laboratory of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
9
|
He G, Zhou Y, Li M, Guo Y, Yin H, Yang B, Zhang S, Liu Y. Bioinspired Synthesis of ZnO@polydopamine/Au for Label-Free Photoelectrochemical Immunoassay of Amyloid-β Protein. Front Bioeng Biotechnol 2021; 9:777344. [PMID: 34869291 PMCID: PMC8637201 DOI: 10.3389/fbioe.2021.777344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023] Open
Abstract
Amyloid-β protein (Aβ) is an important biomarker and plays a key role in the early stage of Alzheimer's disease (AD). Here, an ultrasensitive photoelectrochemical (PEC) sensor based on ZnO@polydopamine/Au nanocomposites was constructed for quantitative detection of Aβ. In this sensing system, the ZnO nanorod array decorated with PDA films and gold nanoparticles (Au NPs) have excellent visible-light activity. The PDA film was used as a sensitizer for charge separation, and it also was used for antibody binding. Moreover, Au NPs were loaded on the surface of PDA film by in situ deposition, which further improved the charge transfer efficiency and the PEC activity in visible light due to the localized surface plasmon resonance effect of Au NPs. Therefore, in ZnO@polydopamine/Au nanocomposites, a significantly enhanced photocurrent response was obtained on this photoelectrode, which provides a good and reliable signal for early detection of AD. Under the optimized conditions, the PEC immunosensor displayed a wide linear range from 1 pg/mL to 100 ng/mL and a low detection limit of 0.26 pg/mL. In addition, this PEC immunosensor also presented good selectivity, stability, and reproducibility. This work may provide a promising point-of-care testing method toward advanced PEC immunoassays for AD biomarkers.
Collapse
Affiliation(s)
- Guangli He
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Yue Zhou
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Mifang Li
- Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| | - Yanzhen Guo
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Hang Yin
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Yibiao Liu
- Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
10
|
Phan LMT, Cho S. A Multi-Chamber Paper-Based Platform for the Detection of Amyloid β Oligomers 42 via Copper-Enhanced Gold Immunoblotting. Biomolecules 2021; 11:948. [PMID: 34206715 PMCID: PMC8301831 DOI: 10.3390/biom11070948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022] Open
Abstract
The early diagnosis of Alzheimer's disease (AD) remains a challenge for medical scientists worldwide, leading to a number of research efforts that focus on biosensor development for AD biomarkers. However, the application of these complicated biosensors is limited in medical diagnosis, due to the difficulties in robust sensing platform development, high costs, and the necessity for technical professionals. We successfully developed a robust straightforward manufacturing process for the fabrication of multi-chamber paper devices using the wax printing method and exploited it to detect amyloid beta 42 oligomers (AβO42, a significant biomarker of AD) using copper-enhanced gold nanoprobe colorimetric immunoblotting. Small hydrophilic reaction chambers could concentrate the target sample to the desired size to improve the sensing performance. The copper-enhanced gold nanoprobe immunoblot using the designed multi-chamber platform exhibited a highly sensitive performance with a limit of detection of 320 pg/mL by the naked eye and 23.7 pg/mL by a smartphone camera. This process from sensing manufacture to sensing conduction is simple to perform whenever medical technicians require time- and cost-savings, without complicated instruments or the need for technical professionals, making it feasible to serve as a diagnostic tool worldwide for the early monitoring of AD and scalable devices for the sensing application of various biomarkers in clinical settings.
Collapse
Affiliation(s)
- Le-Minh-Tu Phan
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
11
|
Matsumura M, Sato K, Kubota T, Kishimoto Y. Spatial and latent memory data in PS2Tg2576 alzheimer's disease mouse model after memantine treatment. Data Brief 2021; 36:107131. [PMID: 34095380 PMCID: PMC8166749 DOI: 10.1016/j.dib.2021.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 11/02/2022] Open
Abstract
We herein present behavioral data on whether memantine, an adamantane derivative and medical NMDA-receptor antagonist, improves spatial and latent learning deficits in amyloid precursor protein/presenilin 2 double-transgenic mice (PS2Tg2576 mice). In PS2Tg2576 mice, early amyloid-β protein (Aβ) deposition at 2-3 months of age and progressive accumulation at about 5 months of age has been shown. Thus, PS2Tg2576 mice were subjected to Morris water maze (MWM) test for spatial memory and the water-finding test for latent memory testing at ages 3 and 5-6 months. In addition, memantine (30 mg/kg/day, p.o.) was administered 3-4 weeks before commencing the behavioral tasks to check for effects on cognitive function. The information provided in this paper adds to the literature and can be used for the selection of animal models and behavioral paradigms for Alzheimer's disease (AD) research.
Collapse
Affiliation(s)
- Masahisa Matsumura
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Kana Sato
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Takashi Kubota
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yasushi Kishimoto
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University.,Laboratory of Physical Chemistry, Faculty of Pharma-Science, Teikyo University
| |
Collapse
|
12
|
Zheng Y, Wang P, Li S, Geng X, Zou L, Jin M, Zou Q, Wang Q, Yang X, Wang K. Development of DNA Aptamer as a β-Amyloid Aggregation Inhibitor. ACS APPLIED BIO MATERIALS 2020; 3:8611-8618. [DOI: 10.1021/acsabm.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Pei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Meimei Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|