1
|
Mondal K, Paul S, Halder P, Talukdar V, Das P. Iodine-Catalyzed Regioselective C-3 Chalcogenation of 7-Azaindoles: Access to Benzothiophene-Fused 7-Azaindole Analogs. J Org Chem 2024; 89:17042-17058. [PMID: 39527407 DOI: 10.1021/acs.joc.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An iodine-catalyzed method has been reported for efficient regioselective C-3 sulfenylation, selenylation, thiocyanation, and selenocyanation of NH-free 7-azaindoles using thiophenols, diselenides, potassium thiocyanates, and selenocyanates, respectively. This approach showcases high efficiency and remarkable versatility, facilitating the synthesis of diverse chalcogenated 7-azaindoles. Additionally, the sulfenylated derivatives have been further diversified to generate a new array of benzothiophene-fused 7-azaindole cores of pharmaceutical interest. The synthetic flexibility of this protocol has been highlighted through the gram-scale synthesis of sulfonylated 7-azaindole-based bioactive 5-HT6 receptor agonists.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Siddhartha Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
2
|
Sang T, Li C, Jia F, He J, Liu Y, Vaccaro L, Liu J, Liu P. Halogenation of Pyrazolo[1,5-a]Pyrimidines with NXS. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2144906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tian Sang
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Chuntian Li
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Fan Jia
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Jing He
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C. – Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia, Italy
| | - Jichang Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, China
| |
Collapse
|
3
|
Jia F, He J, Wei Y, Liu Y, Gu Y, Vaccaro L, Liu P. C4-Sulfenylation of 4-iodine-1H-pyrazole-5-amine with arylsulfonyl hydrazide in water. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Asnaashariisfahani M, Azizi B, Poor Heravi MR, Mohammadi E, Arshadi S, Vessally E. Strategies for the direct oxidative esterification of thiols with alcohols. RSC Adv 2022; 12:14521-14534. [PMID: 35702200 PMCID: PMC9105656 DOI: 10.1039/d1ra08058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
This review paper provides an overview of the main strategies for the oxidative esterification of thiols with alcohols. The review is divided into two major parts according to final products. The first includes the methods for the synthesis of sulfinic esters, while the second contains the procedures for the fabrication of sulfonic ester derivatives.
Collapse
Affiliation(s)
| | - Bayan Azizi
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development Sulaymaniyah Iraq
| | | | | | - Sattar Arshadi
- Department of Chemistry, Payame Noor University P. O. Box 19395-4697 Tehran Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-4697 Tehran Iran
| |
Collapse
|
5
|
Feng Y, He J, Wei Y, Xie JW, Liu P. Iodine‐Promoted Tandem Pyrazole Annulation and C‐H Sulfenylation for the Synthesis of C4‐Sulfenylated Pyrazoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yijiao Feng
- Hunan University of Science and Engineering College of Chemistry and Bioengineering CHINA
| | - Jing He
- Shihezi University School of Chemistry and Chemical Engineering CHINA
| | - Yueting Wei
- Shihezi University School of Chemistry and Chemical Engineering CHINA
| | - Jian-Wei Xie
- School of Chemistry and Chemical Engineering Shihezi University North 4th Road 832003 Shihezi CHINA
| | - Ping Liu
- Shihezi University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
6
|
Abbas EMH, Farghaly TA, Sabour R, Shaaban MR, Abdallah ZA. Design, synthesis, cytotoxicity, and molecular docking studies of novel thiazolyl-hydrazone derivatives as histone lysine acetyl-transferase inhibitors and apoptosis inducers. Arch Pharm (Weinheim) 2022; 355:e2200076. [PMID: 35393652 DOI: 10.1002/ardp.202200076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/30/2023]
Abstract
Compounds containing both thiazole and arylsulfone moieties are recognized for their high biological activity and ability to fight a variety of ailments. Thus, in this context, new derivatives of (thiazol-2-yl)hydrazone with an arylsulfone moiety were synthesized as CPTH2 analogs with potent anti-histone lysine acetyl-transferase activity. Compounds 3, 4, 10b, and 11b showed an excellent inhibitory effect on P300 (E1A-associated protein p300), compared to CPTH2. Among all the tested derivatives, compound 10b revealed the highest activity against both P300 and pCAF. In addition, the new hits were tested for anticancer efficacy against two leukemia cell lines. Most of them showed a moderate to potent antitumor effect on the k562 and CCRF-CEM cell lines. Interestingly, the activity of compound 10b against the k562 cell line was found to be higher than that of CPTH2. Furthermore, it showed a good safety profile, better than CPTH2 on normal cells. Molecular docking analysis was carried out to reveal the crucial binding contacts in the inhibition of the P300 and pCAF enzymes.
Collapse
Affiliation(s)
- Eman M H Abbas
- Department of Chemistry, Natural and Microbial Products, National Research Center, Dokki, Cairo, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed R Shaaban
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Almukkarramah, Saudi Arabia
| | - Zeinab A Abdallah
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Feng Y, He J, Wei Y, Tang T, Li C, Liu P. One-Pot Two-Step Strategy for Efficient Synthesis of 3-Aryl-4-(arylthio)-1H-pyrazol-5-amines Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zheng C, Jiang C, Huang S, Zhao K, Fu Y, Ma M, Hong J. Transition-Metal-Free Synthesis of Aryl Trifluoromethyl Thioethers through Indirect Trifluoromethylthiolation of Sodium Arylsulfinate with TMSCF 3. Org Lett 2021; 23:6982-6986. [PMID: 34474573 DOI: 10.1021/acs.orglett.1c02656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report an indirect trifluoromethylthiolation of sodium arylsulfinates. This transition-metal-free reaction significantly provides an environmentally friendly and practical synthetic method for aryl trifluoromethyl thioethers using commercial Ruppert-Prakash reagent TMSCF3. This approach is also a potential alternative to the current industrial production method owing to facile substrates, excellent functional group compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.,School of Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang Uygur Autonomous Region, P. R. China
| | - Chao Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shuai Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yingying Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Mingyu Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
9
|
Murugesan T, Sivarajan C, Jayakumari CM, Singh RK, Vennapusa SR, Kaliyamoorthy A. Palladium-Catalyzed Direct C2-Biarylation of Indoles. J Org Chem 2021; 86:10838-10851. [PMID: 34291945 DOI: 10.1021/acs.joc.1c01123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biaryl and indole units are important structural motifs in several bioactive molecules and functional materials. We have accomplished straightforward access to C2-biarylated indole derivatives through palladium-catalyzed C-H activation strategy with a broad range of substrate scope in yields of 24 to 92%. Besides, the UV/visible absorption and fluorescence properties of the ensuing products were explored. The calculated higher dihedral angle and rotational barrier values for the selected C2-biarylated indoles show that these compounds may display atropisomerism at room temperature.
Collapse
Affiliation(s)
- Tamilarasu Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Chinraj Sivarajan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Chithra Mohan Jayakumari
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Rajat Kumar Singh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
10
|
Wei Y, Liu P, Liu Y, He J, Li X, Li S, Zhao J. NIS-promoted three-component reaction of 3-oxo-3-arylpropanenitriles with arylsulfonyl hydrazides. Org Biomol Chem 2021; 19:3932-3939. [PMID: 33949584 DOI: 10.1039/d1ob00438g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new three-component reaction of 3-oxo-3-arylpropanenitriles with arylsulfonyl hydrazides has been established, and an expanded inventory of 3-aryl-4-(arylthio)-1H-pyrazol-5-amines is synthesized by sequential cyclization and sulfenylation reactions under the action of NIS. In addition to the attractive features of multicomponent reactions, the protocol presents broad substrate scope, good functional group tolerance and mild reaction conditions. The utility of this procedure is further established by gram-scale synthesis as well as the diversified transformations of the products to useful compounds.
Collapse
Affiliation(s)
- Yueting Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.
| | - Ping Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.
| | - Yali Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.
| | - Jing He
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.
| | - Xuezhen Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.
| | - Shiwu Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.
| | - Jixing Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.
| |
Collapse
|
11
|
Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04469-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Yueting W, Yali L, Jing H, Xuezhen L, Ping L, Jie Z. TBAI-mediated sulfenylation of arenes with arylsulfonyl hydrazides in DPDME. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|