1
|
Engelhardt PM, Keyzers R, Brimble MA. Histidine-bridged cyclic peptide natural products: isolation, biosynthesis and synthetic studies. Org Biomol Chem 2024; 22:8374-8396. [PMID: 39352687 DOI: 10.1039/d4ob01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The histidine bridge is a rare and often overlooked structural motif in macrocyclic peptide natural products, yet there are several examples in nature of cyclic peptides bearing this moiety that exhibit potent biological activity. These interesting compounds have been the focus of several studies reporting their isolation, biosynthesis and chemical synthesis over the last four decades. This review summarises the findings on the structure, biological activity and, where possible, proposed biosynthesis and progress towards the synthesis of histidine-bridged cyclic peptides.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Robert Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Laby Building Kelburn Parade, Wellington 6012, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Keyes ED, Mifflin MC, Austin MJ, Sandres J, Roberts AG. Chemical cyclization of tyrosine-containing peptides via in situ generated triazolinedione peptides. Methods Enzymol 2024; 698:89-109. [PMID: 38886041 DOI: 10.1016/bs.mie.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Tyr-derived cyclic peptide natural products are formed by enzymatic manifolds that oxidatively cross-link embedded phenolic side chains of tyrosine (Tyr) and 4-hydroxyphenylglycine residues during their controlled production. Bioactive Tyr-derived cyclic peptides, such as the arylomycins and vancomycins, continue to motivate the development of enzymatic and chemical strategies for their de novo assembly and modification. However, chemical access to these structurally diverse natural cycles can be challenging and step intensive. Therefore, we developed an oxidative procedure to selectively convert Tyr-containing N4-substituted 1,2,4-triazolidine-3,5-dione peptides (urazole peptides) into stable Tyr-linked cyclic peptides. We show that Tyr-containing urazole peptides are simple to prepare and convert into reactive N4-substituted 1,2,4-triazoline-3,5-dione peptides by oxidation, which then undergo spontaneous cyclization under mildly basic aqueous conditions to form a cross-linkage with the phenol side chain of embedded Tyr residues. Using this approach, we have demonstrated access to over 25 Tyr-linked cyclic peptides (3- to 11-residue cycles) with good tolerance of native residue side chain functionalities. Importantly, this method is simple to perform, and product formation can be quickly confirmed by mass spectrometric and 1H NMR spectroscopic analyses.
Collapse
Affiliation(s)
- E Dalles Keyes
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Maxwell J Austin
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jesus Sandres
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
3
|
Różanowska M, Szczupaj G, Nowakowski M, Rajagopal P, Lipiński PFJ, Matalińska J, Misicka A, Lisowski M, Jaremko Ł, Jaremko M. Applications of biaryl cyclization in the synthesis of cyclic enkephalin analogs with a highly restricted flexibility. Amino Acids 2024; 56:18. [PMID: 38427104 PMCID: PMC10907494 DOI: 10.1007/s00726-023-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024]
Abstract
A series of 10 cyclic, biaryl analogs of enkephalin, with Tyr or Phe residues at positions 1 and 4, were synthesized according to the Miyaura borylation and Suzuki coupling methodology. Biaryl bridges formed by side chains of the two aromatic amino acid residues are of the meta-meta, meta-para, para-meta, and para-para configuration. Conformational properties of the peptides were studied by CD and NMR. CD studies allowed only to compare conformations of individual peptides while NMR investigations followed by XPLOR calculations provided detailed information on their conformation. Reliability of the XPLOR calculations was confirmed by quantum chemical ones performed for one of the analogs. No intramolecular hydrogen bonds were found in all the peptides. They are folded and adopt the type IV β-turn conformation. Due to a large steric strain, the aromatic carbon atoms forming the biaryl bond are distinctly pyramidalized. Seven of the peptides were tested in vitro for their affinity for the µ-opioid receptor.
Collapse
Affiliation(s)
| | - Gabriela Szczupaj
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Priyadharshni Rajagopal
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marek Lisowski
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Diamandas M, Heller NW, Yudin AK. Nitrilium ion trapping as a strategy to access structurally diverse heterobiaryl-containing peptide macrocycles. Chem Sci 2023; 14:9482-9487. [PMID: 37712035 PMCID: PMC10498670 DOI: 10.1039/d3sc03058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Biaryl and heterobiaryl-containing cyclic peptides represent promising scaffolds for the development of bioactive molecules. The incorporation of heterobiaryl motifs continues to pose synthetic challenges, which is partially due to the difficulties in effecting late-stage metal-catalyzed cross-couplings. We report a new strategy to form heterobiaryls that is based on trapping nitrilium ions. The sequence is exemplified using oxadiazole- and oxazole-containing biaryl linkages. NMR analysis and molecular dynamics simulations reveal structural control elements common to each member of the heterobiaryl containing peptide family in this study. Strategic substitutions on the C-terminal aminobenzoic acid moiety paired with installation of oxadiazole or oxazole heterobiaryl backbone linkages allow for the modulation of peptide backbone conformation, which should assist efforts to optimize the biophysical properties of peptide macrocycles.
Collapse
Affiliation(s)
- Matthew Diamandas
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| | - Nicholas W Heller
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| |
Collapse
|
5
|
Molinaro C, Kawasaki Y, Wanyoike G, Nishioka T, Yamamoto T, Snedecor B, Robinson SJ, Gosselin F. Engineered Cytochrome P450-Catalyzed Oxidative Biaryl Coupling Reaction Provides a Scalable Entry into Arylomycin Antibiotics. J Am Chem Soc 2022; 144:14838-14845. [PMID: 35905381 DOI: 10.1021/jacs.2c06019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein the first example of a cytochrome P450-catalyzed oxidative carbon-carbon coupling process for a scalable entry into arylomycin antibiotic cores. Starting from wild-type hydroxylating cytochrome P450 enzymes and engineered Escherichia coli, a combination of enzyme engineering, random mutagenesis, and optimization of reaction conditions generated a P450 variant that affords the desired arylomycin core 2d in 84% assay yield. Furthermore, this process was demonstrated as a viable route for the production of the arylomycin antibiotic core on the gram scale. Finally, this new entry affords a viable, scalable, and practical route for the synthesis of novel Gram-negative antibiotics.
Collapse
Affiliation(s)
- Carmela Molinaro
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yukie Kawasaki
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - George Wanyoike
- Production Technology Department, MicroBiopharm Japan Co. Ltd., 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan
| | - Taiki Nishioka
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Tsuyoshi Yamamoto
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Cornier PG, Delpiccolo CM, Martiren NL, Mata EG, Mendez L, Permingeat Squizatto C, Pizzio MG. Transition Metal‐Catalyzed Reactions and Solid‐Phase Synthesis: A Convenient Blend. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patricia G. Cornier
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Carina M.L. Delpiccolo
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Nadia L. Martiren
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| | - Ernesto G Mata
- Instituto de Química Rosario Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Luciana Mendez
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 ROSARIO ARGENTINA
| | | | - Marianela G. Pizzio
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| |
Collapse
|
7
|
Sun D. Recent Advances in Macrocyclic Drugs and Microwave-Assisted and/or Solid-Supported Synthesis of Macrocycles. Molecules 2022; 27:1012. [PMID: 35164274 PMCID: PMC8839925 DOI: 10.3390/molecules27031012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022] Open
Abstract
Macrocycles represent attractive candidates in organic synthesis and drug discovery. Since 2014, nineteen macrocyclic drugs, including three radiopharmaceuticals, have been approved by FDA for the treatment of bacterial and viral infections, cancer, obesity, immunosuppression, etc. As such, new synthetic methodologies and high throughput chemistry (e.g., microwave-assisted and/or solid-phase synthesis) to access various macrocycle entities have attracted great interest in this chemical space. This article serves as an update on our previous review related to macrocyclic drugs and new synthetic strategies toward macrocycles (Molecules, 2013, 18, 6230). In this work, I first reviewed recent FDA-approved macrocyclic drugs since 2014, followed by new advances in macrocycle synthesis using high throughput chemistry, including microwave-assisted and/or solid-supported macrocyclization strategies. Examples and highlights of macrocyclization include macrolactonization and macrolactamization, transition-metal catalyzed olefin ring-closure metathesis, intramolecular C-C and C-heteroatom cross-coupling, copper- or ruthenium-catalyzed azide-alkyne cycloaddition, intramolecular SNAr or SN2 nucleophilic substitution, condensation reaction, and multi-component reaction-mediated macrocyclization, and covering the literature since 2010.
Collapse
Affiliation(s)
- Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| |
Collapse
|
8
|
Tan W, Yin Y, Wen J. Increasing fengycin production by strengthening the fatty acid synthesis pathway and optimizing fermentation conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|