1
|
Yoshioka S, Ohta A, Rahman S, Imaizumi M, Ni S, Mizuishi T, Sawai H, Wong KH, Mashio AS, Hasegawa H. Enhanced fluoride extraction from contaminated soil combining chelator and surfactant: Insights into adsorptive controlment of soil surface charge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123421. [PMID: 39581010 DOI: 10.1016/j.jenvman.2024.123421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Biodegradable chelators and surfactants are promising alternatives to conventional washing agents for remediating soil contaminated with toxic elements, owing to their excellent extractability and environmental compatibility. Most previous studies have primarily aimed at maximizing removal efficiency. However, understanding their underlying extraction mechanism is essential to expand the application potential of chelator- or surfactant-assisted washing systems. This study evaluated the effectiveness of chelators and surfactants in remediating fluoride (F)-contaminated soil and explored their associated extraction mechanisms. Our findings highlight a biodegradable chelator, HIDS (3-hydroxy-2,2'-imino disuccinic acid) as uniquely effective in F extraction with minimal F-bearing minerals dissolution (Ca, Fe, and Al). Chelator recovery rates and zeta potential measurements in post-washed solutions suggests that HIDS adsorbs onto soil surfaces, displacing the originally adsorbed F and enhancing the negative surface charge to inhibit F re-adsorption. Additionally, applying an anionic surfactant to enhance F extraction from soil showed promising results. Notably, a binary blend of HIDS and in-lab designed anionic surfactant, SDT (sodium N-dodecanoyl-taurinate), achieved the highest F removal rate (132 mg kg-1) under optimized washing conditions (HIDS: 10 mmol L-1, SDT: 10 mmol L-1, solution pH: 3, and washing time: 1 h), enhancing F extraction by 22% compared to HIDS-only washing (108 mg kg-1; washing time: 3 h). The FT-IR and zeta potential measurements suggested that SDT adsorbed onto the soil surface. The action of the HIDS-SDT blend towards F extraction involves the complexation and acid dissolution of F-bearing soil minerals, followed by F replacement through chelator and surfactant adsorption. This process mitigated F back-adsorption and enhanced F extraction by generating a negatively charged soil surface.
Collapse
Affiliation(s)
- Shoji Yoshioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Shafiqur Rahman
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Minami Imaizumi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shengbin Ni
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomoya Mizuishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Daikyo Construction, 235-2, Kaya, Yonago, Tottori 689-3543, Japan
| | - Hikaru Sawai
- Department of Industrial Engineering, National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki, 312-8508, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
2
|
Gu Y, Chen W, Chen L, Liu M, Zhao K, Wang Z, Yu H. Electrochemical coalescence of oil-in-water droplets in microchannels of TiO 2-x/Ti anode via polarization eliminating electrostatic repulsion and ·OH oxidation destroying oil-water interface film. WATER RESEARCH 2024; 255:121550. [PMID: 38579590 DOI: 10.1016/j.watres.2024.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Electrochemistry is a sustainable technology for oil-water separation. In the common flat electrode scheme, due to a few centimeters away from the anode, oil droplets have to undergo electromigration to and electrical neutralization at the anodic surface before they coalesce into large oil droplets and rise to water surface, resulting in slow demulsification and easy anode fouling. Herein, a novel strategy is proposed on basis of a TiO2-x/Ti anode with microchannels to overcome these problems. When oil droplets with several microns in diameter flow through channels with tens of microns in diameter, the electromigration distance is shortened by three orders of magnitude, electrical neutralization is replaced by polarization coupling ·OH oxidation. The new strategy was supported by experimental results and theoretical analysis. Taking the suspension containing emulsified oil as targets, COD value dropped from initial 500 mg/L to 117 mg/L after flowing through anodic microchannels in only 58 s of running time, and the COD removal was 21 times higher than that for a plate anode. At similar COD removal, the residence time was 48 times shorter than that of reported flat electrodes. Coalescences of oil droplets in microchannels were observed by a confocal laser scanning microscopy. This new strategy opens a door for using microchannel electrodes to accelerate electrochemical coalescence of oil-in-water droplets.
Collapse
Affiliation(s)
- Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weiqiang Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Li Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kun Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichen Wang
- Suzhou Guolong Technology Development Co., Ltd, Suzhou 215217, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Yavrukova VI, Danov KD, Slavova TG, Stanimirova RD, Wei Ung Y, Tong Kim Suan A, Xu H, Petkov JT. Enhanced solubility of methyl ester sulfonates below their Krafft points in mixed micellar solutions. J Colloid Interface Sci 2024; 660:896-906. [PMID: 38280282 DOI: 10.1016/j.jcis.2024.01.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
HYPOTHESIS Methyl ester sulfonates (MES) show limited water solubility at lower temperatures (Krafft point). One way to increase their solubility below their Krafft points is to incorporate them in anionic surfactant micelles. The electrostatic interactions between the ionic surfactant molecules and charged micelles play an important role for the degree of MES solubility. EXPERIMENTS The solubility and electrolytic conductivity for binary and ternary surfactant mixtures of MES with anionic sodium alpha olefin sulfonate (AOS) and sodium lauryl ether sulfate with two ethylene oxide groups (SLES-2EO) at 5 °C during long-term storage were measured. Phase diagrams were established; a general phase separation theoretical model for their explanation was developed and checked experimentally. FINDINGS The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general phase separation model for ionic surfactant mixtures is convenient for construction of such complex phase diagrams and provides information on the concentrations of all components of the complex solution and on the micellar electrostatic potential. The obtained maximal MES mole fraction of transparent micellar solutions could be of interest to increase the range of applicability of MES-surfactants.
Collapse
Affiliation(s)
- Veronika I Yavrukova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Krassimir D Danov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, Sofia 1164, Bulgaria.
| | - Tatiana G Slavova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Rumyana D Stanimirova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Yee Wei Ung
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, Petaling Jaya, Selangor Dalur Ehsan 47810, Malaysia
| | - Alvin Tong Kim Suan
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, Petaling Jaya, Selangor Dalur Ehsan 47810, Malaysia
| | - Hui Xu
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, Petaling Jaya, Selangor Dalur Ehsan 47810, Malaysia
| | - Jordan T Petkov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, Sofia 1164, Bulgaria; Biological Physics, School of Physics and Astronomy, The University of Manchester, Schuster Building, Oxford Road, M13 9PL, UK
| |
Collapse
|
4
|
Yusof YA, Azizul Hasan ZA, Abd Maurad Z. Mutagenicity Assessment of Homologous Series of Methyl Ester Sulphonates (MES) Using the Bacterial Reverse Mutation (Ames) Test. Int J Toxicol 2024; 43:157-164. [PMID: 38048784 DOI: 10.1177/10915818231217041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Methyl ester sulphonate (MES) is an anionic surfactant that is suitable to be used as an active ingredient in household products. Four palm-based MES compounds with various carbon chains, namely C12, C14, C16 and C16/18 MES, were assayed by the in vitro bacterial reverse mutation (Ames) test in the Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 and the Escherichia coli strain WP2 uvrA, with the aim of establishing the safety data of the compounds, specifically their mutagenicity. The test was also carried out on linear alkylbenzene sulphonate (LAS) for comparison. The plate incorporation method was conducted according to the Organization for Economic Cooperation and Development (OECD) Test Guideline 471. All compounds were tested at five analysable non-cytotoxic concentrations, varying from .001 mg/plate to 5 mg/plate, with and without S-9 metabolic activation. All tested concentrations showed no significant increase in the number of revertant colonies compared to revertant colonies of the negative control. The Ames test indicated that each concentration of C12, C14, C16, C16/18 MES, and LAS used in this study induced neither base-pair substitutions nor frame-shift mutations in the S. typhimurium strains TA98, TA100, TA1535, and TA1537 and the E. coli strain WP2 uvrA. The results showed that C12, C14, C16 and C16/18 MES have no potential mutagenic properties in the presence and absence of S-9 metabolic activation, similarly to LAS. Therefore, the MES is safe to be used as an alternative to petroleum-based surfactants for household cleaning products.
Collapse
|
5
|
Hassan T, Kandeel EM, Taher MS, Badr EE, El-Tabei AS. Sustainable utilization of the vegetable oil manufacturing waste product in the formulation of eco-friendly emulsifiable cutting fluids. Sci Rep 2023; 13:21406. [PMID: 38049449 PMCID: PMC10696049 DOI: 10.1038/s41598-023-46768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 12/06/2023] Open
Abstract
The conventional Metal cutting fluids (MCFs) used are mineral-based petroleum oils that perform well but are toxic and difficult to dispose of; therefore, these are hazardous to human health as well as the environment. This issue can be solved by using natural vegetable oil-based MCF, which are readily available, environment and human-friendly, and renewable. Therefore, we synthesized various types of emulsifiers (anionic, and nonionic with different ethylene oxide units as well as mono and gemini cationic surfactants as corrosion inhibitors and biocides) based on recycled vegetable oil (RO) from spent bleaching earth (SBE), and elucidated their chemical structures by different spectroscopic techniques. The individually synthesized emulsifiers (anionic, and nonionic with different ethylene oxide units) at different ratios (8-15 by wt.%) and mixed emulsifiers (anionic/nonionic, nonionic/nonionic with different degrees of ethylene oxide) at different ratios (8-12 by wt.%) were utilized as additives in the preparation of different vegetable residual oil-based MCF formulations. The mixed emulsifiers at different ratios of nonionic/nonionic with hydrophilic-lipophilic balance (HLB) value 10 (Formulas I, II, III, and IV), and anionic/nonionic (Formula V, and VI) exhibited stable emulsions compared to individual emulsifiers. Formulas (I and VI) displayed good protection effectiveness in corrosion tests. Formula VI had better wettability (25.22 on CS, 23.68 on Al, and 22.28 on WC) and a smaller particle size (63.97 nm). Tribological properties of Formula VI were also performed. The results exhibit that Formula VI is consistent with the commercial sample. As a result, this study contributed to the resolution of one of the industry's problems.
Collapse
Affiliation(s)
- Toka Hassan
- Chemistry Department, Faculty of Science, Al-Azhar University (for Girls), Cairo, 11754, Egypt
| | - Eman M Kandeel
- Chemistry Department, Faculty of Science, Al-Azhar University (for Girls), Cairo, 11754, Egypt
| | - M S Taher
- Chemistry Department, Faculty of Science, Al-Azhar University (for Girls), Cairo, 11754, Egypt
| | - Entsar E Badr
- Chemistry Department, Faculty of Science, Al-Azhar University (for Girls), Cairo, 11754, Egypt.
| | - A S El-Tabei
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| |
Collapse
|
6
|
Rahman S, Rahman IMM, Hasegawa H. Management of arsenic-contaminated excavated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118943. [PMID: 37748284 DOI: 10.1016/j.jenvman.2023.118943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Ongoing global sustainable development and underground space utilization projects have inadvertently exposed many excavated soils naturally contaminated with geogenic arsenic (As). Recent investigations have revealed that As in certain excavated soils, especially those originating from deep construction projects, has exceeded regulatory limits, threatening the environment and human health. While numerous remediation techniques exist for treating As-contaminated soil, the unique characteristics of geogenic As contamination in excavated soil require specific measures when leachable As content surpasses established regulatory limits. Consequently, several standard leaching tests have been developed globally to assess As leaching from contaminated soil. However, a comprehensive comparative analysis of these methods and their implementation in contaminated excavated soils remains lacking. Furthermore, the suitability and efficacy of most conventional and advanced techniques for remediating As-contaminated excavated soils remained unexplored. Therefore, this study critically reviews relevant literature and summarize recent research findings concerning the management and mitigation of geogenic As in naturally contaminated excavated soil. The objective of this study was to outline present status of excavated soil globally, the extent and mode of As enrichment, management and mitigation approaches for As-contaminated soil, global excavated soil recycling strategies, and relevant soil contamination countermeasure laws. Additionally, the study provides a concise overview and comparison of standard As leaching tests developed across different countries. Furthermore, this review assessed the suitability of prominent and widely accepted As remediation techniques based on their applicability, acceptability, cost-effectiveness, duration, and overall treatment efficiency. This comprehensive review contributes to a more profound comprehension of the challenges linked to geogenic As contamination in excavated soils.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Yusuff AS, Ishola NB, Gbadamosi AO. Artificial Intelligence Techniques and Response Surface Methodology for the Optimization of Methyl Ester Sulfonate Synthesis from Used Cooking Oil by Sulfonation. ACS OMEGA 2023; 8:19287-19301. [PMID: 37305254 PMCID: PMC10249033 DOI: 10.1021/acsomega.2c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 06/13/2023]
Abstract
Herein, the impacts of sulfonation temperature (100-120 °C), sulfonation time (3-5 h), and NaHSO3/methyl ester (ME) molar ratio (1:1-1.5:1 mol/mol) on methyl ester sulfonate (MES) yield were studied. For the first time, MES synthesis via the sulfonation process was modeled using the adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and response surface methodology (RSM). Moreover, particle swarm optimization (PSO) and RSM methods were used to improve the independent process variables that affect the sulfonation process. The RSM model (coefficient of determination (R2) = 0.9695, mean square error (MSE) = 2.7094, and average absolute deviation (AAD) = 2.9508%) was the least efficient in accurately predicting MES yield, whereas the ANFIS model (R2 = 0.9886, MSE = 1.0138, and AAD = 0.9058%) was superior to the ANN model (R2 = 0.9750, MSE = 2.6282, and AAD = 1.7184%). The results of process optimization using the developed models revealed that PSO outperformed RSM. The ANFIS model coupled with PSO (ANFIS-PSO) achieved the best combination of sulfonation process factors (96.84 °C temperature, 2.68 h time, and 0.92:1 mol/mol NaHSO3/ME molar ratio) that resulted in the maximum MES yield of 74.82%. Analysis of MES synthesized under optimum conditions using FTIR, 1H NMR, and surface tension determination showed that MES could be prepared from used cooking oil.
Collapse
Affiliation(s)
- Adeyinka Sikiru Yusuff
- Department
of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University, Ado-Ekiti 23438, Nigeria
| | - Niyi Babatunde Ishola
- Department
of Chemical Engineering, Faculty of Technology, Obafemi Awolowo University, Ile-Ife 23438, Nigeria
| | - Afeez Olayinka Gbadamosi
- Department
of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
| |
Collapse
|
8
|
Bode‐Olajide FB, Yusuff AS, Adesina OA, Adeniyi AT. Influence of process conditions on the sulfonation of methyl ester synthesized from used cooking oil: Optimization by Taguchi approach. J SURFACTANTS DETERG 2023. [DOI: 10.1002/jsde.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Favour B. Bode‐Olajide
- Department of Chemical and Petroleum Engineering, College of Engineering Afe Babalola University Ado‐Ekiti Nigeria
| | - Adeyinka S. Yusuff
- Department of Chemical and Petroleum Engineering, College of Engineering Afe Babalola University Ado‐Ekiti Nigeria
| | - Olusola A. Adesina
- Department of Chemical and Petroleum Engineering, College of Engineering Afe Babalola University Ado‐Ekiti Nigeria
| | - Adekunle T. Adeniyi
- Department of Chemical and Petroleum Engineering, College of Engineering Afe Babalola University Ado‐Ekiti Nigeria
| |
Collapse
|
9
|
Dong Q, Li X, Dong J. Branched polyoxyethylene surfactants with different hydrophilic head groups from fatty acid derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Korkmaz A, Bursal E. An in vitro and in silico study on the synthesis and characterization of novel bis(sulfonate) derivatives as tyrosinase and pancreatic lipase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Rahman S, Rahman IMM, Ni S, Harada Y, Kasai S, Nakakubo K, Begum ZA, Wong KH, Mashio AS, Ohta A, Hasegawa H. Enhanced remediation of arsenic-contaminated excavated soil using a binary blend of biodegradable surfactant and chelator. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128562. [PMID: 35248963 DOI: 10.1016/j.jhazmat.2022.128562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The reclamation of geogenic As-contaminated excavated soils as construction additives can reduce the post-disposal impact on the ecosystem and space. Although retaining soil characteristics while reducing contaminant load is a challenging task, washing remediation with biodegradable surfactants or chelators is a promising alternative to non-biodegradable counterparts. In this study, newly synthesized biodegradable surfactants (SDG: sodium N-dodecanoyl-glycinate, SDBA: sodium N-dodecanoyl-β-alaninate, SDGBH: sodium N-dodecanoyl-α,γ-glutamyl-bis-hydroxyprolinate, SDT: sodium N-dodecanoyl-taurinate, and DCPC: N-dodecyl-3-carbamoyl-pyridinium-chloride) and biodegradable chelators (EDDS: ethylenediamine N,N'-disuccinic acid, GLDA: L-glutamate-N, N'-diacetic acid, and HIDS: 3-hydroxy-2,2'-imino disuccinic acid) are evaluated for the remediation of As-contaminated soil. The operating variables, such as washing duration, solution pH, and surfactant or chelator concentration, are optimized for maximum As extraction. SDT shows the highest As-extraction efficiency irrespective of solution pH and surfactant variants, while HIDS is the superior chelator under acidic or alkaline conditions. A binary blend of SDT and HIDS is evaluated for As extraction under varying operating conditions. The SDT-HIDS binary blend demonstrates 6.9 and 1.6-times higher As-extraction rates than the SDT and HIDS-only washing, respectively, under acidic conditions. The proposed approach with a binary blend of a biodegradable surfactant and chelator is a green solution for recycling As-contaminated excavated soils for geotechnical applications.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Shengbin Ni
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yasuhiro Harada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Shuto Kasai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Keisuke Nakakubo
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Zinnat A Begum
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan; Department of Civil Engineering, Southern University, Arefin Nagar, Bayezid Bostami, Chattogram 4210, Bangladesh
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|