1
|
Mustafa MZ, Hussain R, Haider MDS, Fatima A, Kanwal N, Hussain A, Yawer A, Yawer MA, Ayub K. Influence of terminal moiety on PCE of DSSCs: An In Silico study based on triazatruxene-benzothiadiazole dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125329. [PMID: 39488914 DOI: 10.1016/j.saa.2024.125329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Our study utilized an experimentally synthesized dye as a reference molecule, employing a donor-π linker-acceptor (D-π-A) framework for organic solar cells. The molecule featured a triazatruxene group linked with alkyl branches as the donor and ethynyl benzoic acid as the acceptor, connected through a derivative of benzothiadiazole as the π linker. To improve optoelectronic and photovoltaic properties, ten theoretically designed dyes (ZA1-ZA10) are proposed, differing from the reference (R) by modifying the terminal acceptor moiety. Various quantum analyses, including frontier molecular orbitals, optical properties, reorganization energies, binding energies, transition density matrices (TDM), molecular electrostatic potential (MEP), dipole moment, and density of states were carried out at DFT/B3LYP/6-31G(d,p). Ground state geometries revealed a co-planar morphology in ZA1-ZA10, facilitating efficient charge transportation. TDM and MEP illustrated improved electronic transitions in the excited states. Computational analyses revealed superior photovoltaic properties of ZA1-ZA10. Notably, ZA5 exhibited the most significant redshift (1021 nm) in absorption, lowest bandgap (1.44 eV), smallest transition energy (1.21 eV), least binding energy (0.23 eV), and improved charge mobilities. Results from the adsorption of ZA1-ZA10 on the TiO2 layer confirmed their anchoring potential and effective injection of electrons to anatase (TiO2)9. These significant outcomes promise the potential and novelty of our designed dyes for higher power conversion efficiencies (PCE) in dye-sensitized solar cells (DSSCs).
Collapse
Affiliation(s)
- Muhammad Zeeshan Mustafa
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, D. G. Khan Campus, Dera Ghazi Khan 32200, Pakistan
| | - Riaz Hussain
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, D. G. Khan Campus, Dera Ghazi Khan 32200, Pakistan.
| | - Muhammad Durair Sajjad Haider
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, D. G. Khan Campus, Dera Ghazi Khan 32200, Pakistan.
| | - Ammara Fatima
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, D. G. Khan Campus, Dera Ghazi Khan 32200, Pakistan
| | - Noureen Kanwal
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Affiefa Yawer
- Faculty of Science, Kamenice 5 D29, RECETOX, Masaryk University, Brno 62500, Czech Republic
| | - Mirza Arfan Yawer
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, D. G. Khan Campus, Dera Ghazi Khan 32200, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
2
|
Khalid M, Jabbar A, Murtaza S, Arshad M, Braga AAC, Ahamad T. Unveiling peripheral symmetric acceptors coupling with tetrathienylbenzene core to promote electron transfer dynamics in organic photovoltaics. Sci Rep 2024; 14:21176. [PMID: 39256499 PMCID: PMC11387658 DOI: 10.1038/s41598-024-71777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Non-fullerene organic compounds are promising materials for advanced photovoltaic devices. The photovoltaic and electronic properties of the derivatives (TTBR and TTB1-TTB6) were determined by employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) analyses using the M06/6-311G(d,p) functional. To enhance the effectiveness of fullerene-free organic photovoltaic cells, modifications were applied to end-capped acceptors by using strong electron-withdrawing moieties. The structural tailoring showed a significant electronic impact for HOMO and LUMO for all chromophores, resulting in decreased band gaps (3.184-2.540 eV). Interestingly, all the designed derivatives exhibited broader absorption spectra in the range of 486.365-605.895 nm in dichloromethane solvent. Among all derivatives, TTB5 was observed to be the promising candidate because of its lowest energy gap (2.54 eV) and binding energy (0.494 eV) values, along with the bathochromic shift (605.895 nm). These chromophores having an A-π-A framework might be considered promising materials for efficient organic cells.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Aiman Jabbar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Arshad
- Industry Solutions, Northern Alberta Institute of Technology, Edmonton, AB, Canada
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Pinjari D, Patil Y, Misra R. Near-Infrared Absorbing Aza-BODIPY Dyes for Optoelectronic Applications. Chem Asian J 2024; 19:e202400167. [PMID: 38733151 DOI: 10.1002/asia.202400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Organic dyes that absorb light in the visible to near-infrared region have garnered significant interest, owing to their extensive utility in organic photovoltaics and various biomedical applications. Aza-boron-dipyrromethene (Aza-BODIPY) dyes are a class of chromophores with impressive photophysical properties such as tunable absorption from the visible region towards near infrared (NIR) region, high molar absorptivity, and fluorescence quantum yield. In this review, we discuss the developments in the aza-BODIPYs, related to their synthetic routes, photophysical properties and their applications. Their design strategies, modifications in chemical structures, mode/position of attachment, and their impact on photo-physical properties are reviewed. The potential applications of aza-BODIPY derivatives such as organic solar cells, photodynamic therapy, boron-neutron capture therapy, fluorescence sensors, photo-redox catalysis, photoacoustic probes and optoelectronic devices are explained.
Collapse
Affiliation(s)
- Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Yuvraj Patil
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota, 58108, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
4
|
Khalid M, Fatima N, Arshad M, Adeel M, Braga AAC, Ahamad T. Unveiling the influence of end-capped acceptors modification on photovoltaic properties of non-fullerene fused ring compounds: a DFT/TD-DFT study. RSC Adv 2024; 14:20441-20453. [PMID: 38946775 PMCID: PMC11208900 DOI: 10.1039/d4ra03170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Herein, unique A-D-A configuration-based molecules (NBD1-NBD7) were designed from the reference compound (NBR) by utilizing the end-capped acceptor modification approach. Various electron-withdrawing units -F, -Cl, -CN, -NO2, -CF3, -HSO3, and -COOCH3, were incorporated into terminals of reference compound to designed NBD1-NBD7, respectively. A theoretical investigation employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) was performed at B3LYP/6-311G(d,p) level. To reveal diverse opto-electronic and photovoltaic properties, the frontier molecular orbitals (FMOs), absorption maxima (λ max), density of states (DOS), exciton binding energy (E b), open-circuit voltage (V oc) and transition density matrix (TDM) analyses were executed at the same functional. Moreover, the global reactivity parameters (GRPs) were calculated using the HOMO-LUMO energy gaps from the FMOs. Significant results were obtained for the designed molecules (NBD1-NBD7) as compared to NBR. They showed lesser energy band gaps (2.024-2.157 eV) as compared to the NBR reference (2.147 eV). The tailored molecules also demonstrated bathochromic shifts in the chloroform (671.087-717.164 nm) and gas phases (623.251-653.404 nm) as compared to NBR compound (674.189 and 626.178 nm, respectively). From the photovoltaic perspectives, they showed promising results (2.024-2.157 V). Furthermore, the existence of intramolecular charge transfer (ICT) in the designed compounds was depicted via their DOS and TDM graphical plots. Among all the investigated molecules, NBD4 was disclosed as the excellent candidate for solar cell applications owing to its favorable properties such as the least band gap (2.024 eV), red-shifted λ max in the chloroform (717.164 nm) and gas (653.404 nm) phases as well as the minimal E b (0.126 eV). This is due to the presence of highly electronegative -NO2 unit at the terminal of electron withdrawing acceptor moiety, which leads to increased conjugation and enhanced the intramolecular charge transfer (ICT) rate. The obtained insights suggested that the designed molecules could be considered as promising materials for potential applications in the realm of OSCs.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Noor Fatima
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Arshad
- Industry Solutions, Northern Alberta Institute of Technology Edmonton Alberta Canada
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University D. I. Khan Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
5
|
Khanam S, Akram SJ, Khera RA, Zohra ST, Shawky AM, Alatawi NS, Ibrahim MAA, Rashid EU. Exploration of charge transfer analysis and photovoltaics properties of A-D-A type non-fullerene phenazine based molecules to enhance the organic solar cell properties. J Mol Graph Model 2023; 125:108580. [PMID: 37544020 DOI: 10.1016/j.jmgm.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
To intensify the photovoltaic properties of organic solar cells, density functional theory (DFT) based computational techniques were implemented on six non-fullerene A-D-A type small molecules (N1-N6) modified from reference molecule (R) which consists of phenazine fused with 1,4- Dimethyl-4H-3,7-dithia-4-aza- cyclopenta [α] pentalene on both sides with one of its phenyl rings acting as the central donor unit, further attached with 2-(5,6-Difluoro-2-methylene-3-oxo-indan-1-ylidene)-malononitrile acceptor groups at terminal sites. All proposed compounds have a phenazine base modified with a variety of substituents at the terminals. Transition density matrix, density of states, frontier molecular orbitals, intramolecular charge transfer abilities and optoelectronic properties of these compounds were investigated using B3LYP/6-31G (d, p) and B3LYP/6-31G++ (d,p) level of theory. All six designed compounds exhibited a bathochromic sift in their λmax as compared to the R molecule. All designed molecules also have reduced band gap and smaller excitation energy than R. Among all, N6 exhibited highest λmax and lowest bandgap as compared to reference molecule indicating its promising photovoltaic properties. Decreased hole and electron reorganization energy in several of the suggested compounds is indicative of greater charge mobility in them. PTB7-Th donor was employed to calculate open circuit voltage of all investigated molecules. N1-N5 molecules had improved optoelectronic properties, significant probable power conversion efficiency as evident from their absorption aspects, high values of Voc, and fill factor, compared to R molecule. Designed A-D-A type NF based molecules make OSCs ideal for use in wearable devices, building-integrated photovoltaics and smart fabrics.
Collapse
Affiliation(s)
- Sabiha Khanam
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan; Theoretical Physics IV, University of Bayreuth, Universität straße 30, 95447, Bayreuth, Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sadia Tul Zohra
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Ishfaq M, Mubashir T, Abdou SN, Tahir MH, Halawa MI, Ibrahim MM, Xie Y. Data mining and library generation to search electron-rich and electron-deficient building blocks for the designing of polymers for photoacoustic imaging. Heliyon 2023; 9:e21332. [PMID: 37964821 PMCID: PMC10641172 DOI: 10.1016/j.heliyon.2023.e21332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Photoacoustic imaging is a good method for biological imaging, for this purpose, materials with strong near infrared (NIR) absorbance are required. In the present study, machine learning models are used to predict the light absorption behavior of polymers. Molecular descriptors are utilized to train a variety of machine learning models. Building blocks are searched from chemical databases, as well as new building blocks are designed using chemical library enumeration method. The Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) method is employed for the creation of 10,000 novel polymers. These polymers are designed based on the input of searched and selected building blocks. To enhance the process, the optimal machine learning model is utilized to predict the UV/visible absorption maxima of the newly designed polymers. Concurrently, chemical similarity analysis is also performed on the selected polymers, and synthetic accessibility of selected polymers is calculated. In summary, the polymers are all easy to synthesize, increasing their potential for practical applications.
Collapse
Affiliation(s)
| | - Tayyaba Mubashir
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Safaa N. Abdou
- Department of Chemistry, Khurmah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mudassir Hussain Tahir
- Research Faculty of Agriculture, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, 060-8589, 060-0811, Japan
| | - Mohamed Ibrahim Halawa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Mansoura, Egypt
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yulin Xie
- Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
7
|
Katubi KM, Saqib M, Maryam M, Mubashir T, Tahir MH, Sulaman M, Alrowaili Z, Al-Buriahi M. Machine learning assisted designing of organic semiconductors for organic solar cells: High-throughput screening and reorganization energy prediction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Islam F, Waqas A, Khan S, Ali A, Sattar A, Tariq MA, Arshad M, Mehboob MY. Anthracene-bridged sensitizers for environmentally compatible dye-sensitized solar cells: In silico modelling and prediction. J Mol Graph Model 2023; 122:108496. [PMID: 37098283 DOI: 10.1016/j.jmgm.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/27/2023]
Abstract
Advancement in solar cells has gained the attention of researchers due to increasing demand and renewable energy sources. Modeling of electron absorbers and donors has been performed extensively for the development of efficient solar cells. In this regard, efforts are being made for designing effective units for the active layer of solar cells. In this study, CXC22 was utilized as a reference in which acetylenic anthracene acted as a π bridge and infrastructure was D-π-A. We theoretically designed four novel dye-sensitized solar cells JU1-JU4 by utilizing reference molecules to improve the photovoltaic and optoelectronic properties. All designed molecules differ from R by donor moiety modifications. Different approaches were done to R and all molecules to explore different analyses like binding energies, excitation energies, dipole moment, TDM (transition density matrix), PDOS (partial density of states), absorption maxima, and charge transfer analysis. For the evaluation of results, we used the DFT technique and the findings demonstrated that the JU3 molecule showed a better redshift absorption value (761 nm) as compared to all other molecules due to the presence of anthracene in the donor moiety which lengthens the conjugation. JU3 was proven to be the best candidate among all due to improved excitation energy (1.69), low energy band gap (1.93), higher λmax value, and improved electron and hole energy values leading toward higher power conversion efficiency. All the other theoretically formed molecules exhibited comparable outcomes as compared to a reference. As a result, this work revealed the potential of organic dyes with anthracene bridges for indoor optoelectronic applications. These unique systems are effective contributors to the development of high-performance solar cells. Thus, we provided efficient systems to the experimentalists for the future development of solar cells.
Collapse
Affiliation(s)
- Fakhar Islam
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, PR China
| | - Ahsan Waqas
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, PR China
| | - Shabir Khan
- Department of Chemistry, Abdul wali Khan University, Mardan, 23200, Pakistan
| | - Amir Ali
- Department of Chemistry, Ghazi University, D.G.Khan, Punjab, Pakistan
| | - Abdul Sattar
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, Dera Ghazi Khan, 32200, Pakistan
| | | | - Muhammad Arshad
- Institute of Chemical Sciences, Gomal University, 29050, Dera Ismail Khan, KPK, Pakistan
| | | |
Collapse
|
9
|
Arshad M, Arshad S, haq HU, Janjhi FA, Khan MS, Tariq MA, Hassan T, Mehboob MY. In Silico modeling and exploration of new acceptor molecules with enhanced power conversion efficiency for high-performance organic solar cell applications. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.124018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Etabti H, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M. Designing and theoretical study of benzocarbazole-based D-π-D type small molecules donor for organic solar cells. J Mol Graph Model 2023; 121:108455. [PMID: 36965230 DOI: 10.1016/j.jmgm.2023.108455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Seven new molecules (S1-S7) of D-π-D type have been designed for organic photovoltaic applications. The DFT and TD-DFT methods were used to investigate the effect of different central bridge groups on the geometric, optoelectronic, and charge transport properties of the constructed molecules. Among them, S4 and S6 have the lowest energy band gap and a red shift in the absorption spectra, revealing the perfect relationship between the central bridge and the strong electron withdrawal character through extended conjugation. Similarly, S6 explored the lowest reorganization energy (RE) value for electron and hole revealing its enhanced charge transition, also shows better ICT characteristics with its highest NLO properties. Compound S4 showed the smallest value of ΔEL-L and Eb, and the highest Voc due to its low HOMO, which improves the photocurrent density of the devices. Thus, the results suggest that bridge modification is a practical strategy to improve the efficiency of OSCs.
Collapse
Affiliation(s)
- Hanane Etabti
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Asmae Fitri
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Adil Touimi Benjelloun
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Benzakour
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Mcharfi
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
11
|
Photovoltaic Characteristics of Organic Heterocyclic 2,9-dimethyl Quinacridone in Different Solvents Using DFT Approach. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Mohammedsaleh Katubi K, Saqib M, Rehman A, Murtaza S, Hussain S, Alrowaili Z, Al-Buriahi M. Theoretical designing of small molecule donors for organic solar cells: Analyzing the effect of molecular polarity through structural engineering at terminal position. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Energy Level Prediction of Organic Semiconductors for Photodetectors and Mining of a Photovoltaic Database to Search for New Building Units. Molecules 2023; 28:molecules28031240. [PMID: 36770904 PMCID: PMC9920193 DOI: 10.3390/molecules28031240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Due to the large versatility in organic semiconductors, selecting a suitable (organic semiconductor) material for photodetectors is a challenging task. Integrating computer science and artificial intelligence with conventional methods in optimization and material synthesis can guide experimental researchers to develop, design, predict and discover high-performance materials for photodetectors. To find high-performance organic semiconductor materials for photodetectors, it is crucial to establish a relationship between photovoltaic properties and chemical structures before performing synthetic procedures in laboratories. Moreover, the fast prediction of energy levels is desirable for designing better organic semiconductor photodetectors. Herein, we first collected large sets of data containing photovoltaic properties of organic semiconductor photodetectors reported in the literature. In addition, molecular descriptors that make it easy and fast to predict the required properties were used to train machine learning models. Power conversion efficiency and energy levels were also predicted. Multiple models were trained using experimental data. The light gradient boosting machine (LGBM) regression model and Hist gradient booting regression model are the best models. The best models were further tuned to achieve better prediction ability. The reliability of our designed approach was further verified by mining the photovoltaic database to search for new building units. The results revealed that good consistency is obtained between experimental outcomes and model predictions, indicating that machine learning is a powerful approach to predict the properties of photodetectors, which can facilitate their rapid development in various fields.
Collapse
|
14
|
Liu L, Wei Z, Meskers SCJ. Polaritons in a Polycrystalline Layer of Non-fullerene Acceptor. J Am Chem Soc 2023; 145:2040-2044. [PMID: 36689605 PMCID: PMC9896558 DOI: 10.1021/jacs.2c11968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-fullerene acceptor molecules developed for organic solar cells feature a very intense absorption band in the near-infrared. In the solid phase, the strong interaction between light and the transition dipole moment for molecular excitation should induce formation of polaritons. The reflection spectra for polycrystalline films of a non-fullerene acceptor with a thienothienopyrrolo-thienothienoindole core of the so-called Y6 type indeed show a signature of polaritons. A local minimum in the middle of the reflection band is associated with the allowed molecular transition. The minimum in reflection allows efficient entry of light into the solid, resulting in a local maximum in external quantum efficiency of a photovoltaic cell made of the pure acceptor.
Collapse
Affiliation(s)
- Lixuan Liu
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands,CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China,School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, China
| | - Zhixiang Wei
- CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China,School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, China,
| | - Stefan C. J. Meskers
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands,
| |
Collapse
|
15
|
Khalid M, Khan M, Shafiq I, Mahmood K, Nadeem Akhtar M, Iqbal J, Al-Sadoon MK, Zaman W, Carmo Braga AA. Role of donors in triggering second order non-linear optical properties of non-fullerene FCO-2FR1 based derivatives: A theoretical perspective. Heliyon 2023; 9:e13033. [PMID: 36846702 PMCID: PMC9947268 DOI: 10.1016/j.heliyon.2023.e13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The organic compounds are known as an emerging class in the field of nonlinear optical (NLO) materials. In this paper, D-π-A configured oxygen containing organic chromophores (FD2-FD6) were designed by incorporating various donors in the chemical structure of FCO-2FR1. This work is also inspired by the feasibility of FCO-2FR1 as an efficient solar cell. Theoretical approach involving DFT functional i.e., B3LYP/6-311G(d,p) was utilized to achieve useful information regarding their electronic, structural, chemical and photonic properties. The structural modifications revealed significant electronic contribution in designing HOMOs and LUMOs for the derivatives with lowered energy gaps. The lowest HOMO-LUMO band gap obtained was 1.223 eV for FD2 compound in comparison to the reference molecule (FCO-2FR1) i.e., 2.053 eV. Moreover, the DFT findings revealed that the end-capped substituents play a key role in enhancing the NLO response of these push-pull chromophores. The UV-Vis spectra of tailored molecules revealed larger λ max values than the reference compound. Furthermore, strong intramolecular interactions showed the highest stabilization energy (28.40 kcal mol-1) for FD2 in the natural bond orbitals (NBOs) transitions, combined with the least binding energy (-0.432 eV). Successfully, the NLO results were favorable for the same chromophore (FD2) which showed the highest value for dipole moment (μ tot = 20.049 D) and first hyper-polarizability (β tot = 11.22 × 10-27 esu). Similarly, the largest value for linear polarizability ⟨α⟩ was obtained as 2.936 × 10-22 esu for FD3 compound. Overall, the designed compounds were calculated with greater NLO values as compared to FCO-2FR1. The current study may provoke the researchers towards designing of highly efficient NLO materials via using the suitable organic linking species.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan,Corresponding author. Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.;
| | - Mashal Khan
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Nadeem Akhtar
- Division of Inorganic Chemistry, Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| |
Collapse
|
16
|
Abbas F, Mohammadi MD, Louis H, Agwamba EC. High-performance non-fullerene acceptor-analogues designed from dithienothiophen [3,2-b]-pyrrolobenzothiadiazole (TPBT) donor materials. J Mol Model 2023; 29:31. [PMID: 36595085 DOI: 10.1007/s00894-022-05435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
CONTEXT Density functional theory (DFT) method was employed to investigate the electronic structure properties, excited state dynamics, charge transfer, and photovoltaic potential of benzo [1,2,5] thiadiazole fused to 3,7-dimethyl-3a,6,7,7b-tetrahydro-5H-thieno[2',3':4,5]thieno[3,2-b]pyrrole to form 3,9,12,13-tetramethyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4,5]pyrrolo[3.2-g]thieno[2',3':4,5]thieno[3,2-b]indole as the acceptor (A), bridge with thiophene as π-spacer to the donor moieties (D) which are 2,3-dihydrobenzo [b]thiophene-6-carboxylic acid (M4) and functionalized R, M1, M2, M3, and M5 to give a D-π-A-π-D. Here is the reverse combination for our molecules: the A-π-D-π-A type of chromophore configuration. It is also observed that tuning the dono-bridge configuration significantly increases the ease of charge transfer as the energy gap decreases in the order of 1.29 eV in M4 < 1.59 eV in M3 < 1.67 eV < 1.99 in M2 and 2.06 eV. The reorganization energy (RE) of M3 (0.0031) and M5 (0.0031) indicates an increase in the order of M3 > M5 > R > M2 > M4 > M1. The HOMO-LUMO indicates that the reactivity decreased, while the stability increased for the reference R at 0.990 eV, compared to the designed molecules M1-M5, with M1 being the least stable at 0.970 eV, while M4 exhibited the highest stability at 1.550 eV. The stability of the designed molecule decreased in the order of M4:1.550 > M3:1.257 > M5:1.197 > M2:1.010 > M1:0.970. Therefore, all results point to the electron-deficient core as an effective end-capped electron acceptor in M1-M5 compounds. As the ideal pair for successfully optimizing optoelectronic properties by reducing the HOMO-LUMO energy levels, reorganization energy, and binding energy and enhancing the absorption maximum and open-circuit voltage values in these designed molecules. METHODS DFT and TDDFT calculations were performed with Gaussian 16 program. The modelled compounds were optimized fully using the CAM-B3LYP, WB97XD, B3LYP, and MPW1PW91 functionals with the 6-31 G (d,p) basis set. The graphs for the density of states were plotted using the PyMOlyze software. Other molecular properties like the transition density matrix (TDM) and electron density difference maps (EDD) were rendered via the Multiwfn software.
Collapse
Affiliation(s)
- Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mohsen D Mohammadi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.,Department of Chemistry, Covenant University, Ota, Nigeria
| |
Collapse
|
17
|
Statistical analysis and visualization of data of non-fullerene small molecule acceptors from Harvard organic photovoltaic database. Structural similarity analysis with famous non-fullerene small molecule acceptors to search new building blocks. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Janjua MRSA. All-small-molecule organic solar cells with high fill factor and enhanced open-circuit voltage with 18.25 % PCE: Physical insights from quantum chemical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121487. [PMID: 35691166 DOI: 10.1016/j.saa.2022.121487] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/25/2023]
Abstract
All-small-molecule acceptors (ASMAs) are considered as well-defined molecular structures with good sustainability and processability. Although these acceptor molecules did not exhibit high power conversion efficiency (PCE) as compared to polymer solar cells, a lot of research is yet to be focused on the development of ASMAs. In this report, a new series of ASMAs (ZMY1 to ZMY5) has been designed by end-capped alteration of recently synthesized ZR-Si4 molecule (PCE = 10.10%). Photovoltaic, optoelectronic and geometric parameters of the newly designed molecules have been investigated through DFT and TD-DFT approaches. Additionally, power conversion efficiency along with fill factor (FF) percentage has been computed for the designed molecules. Enhanced open circuit voltage (Voc) allows PCE at around 18.25 % which is better than the experimentally synthesized ZR-Si4 molecule. Additionally, the high mobility of electrons and hole between metal electrodes also suggested that the designed molecules are effective candidates for the development of efficient organic solar cell (OSC) applications.
Collapse
|
19
|
Usman Khan M, Hussain R, Yaqoob J, Fayyaz ur Rehman M, Adnan Asghar M, Demir Kanmazalp S, Assiri MA, Imran M, Lu C, Safwan Akram M. Theoretical design and prediction of novel fluorene-based non-fullerene acceptors for environmentally friendly organic solar cell. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Bhattacharya L, Brown A, Sharma S, Sahu S. Computational Design of Crescent Shaped Promising Nonfullerene Acceptors with 1,4-Dihydro-2,3-quinoxalinedione Core and Different Electron-withdrawing Terminal Units for Photovoltaic Applications. J Phys Chem A 2022; 126:7110-7126. [PMID: 36178932 DOI: 10.1021/acs.jpca.2c03906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study aims to design a series of nonfullerene acceptors (NFAs) for photovoltaic applications having 1,4-dihydro-2,3-quinoxalinedione fused thiophene derivative as the core unit and 1,1-dicyanomethylene-3-indanone (IC) derivatives and different π-conjugated molecules other than IC as terminal acceptor units. All the investigated NFAs are found air-stable as the computed highest occupied molecular orbitals (HOMOs) are below the air oxidation threshold (ca. -5.27 eV vs saturated calomel electrode). The studied NFAs can act as potential nonfullerene acceptor candidates as they are found to have sufficient open-circuit voltage (Voc) and fill factor (FF) ranging from 0.62 to 1.41 V and 83%-91%, respectively. From the anisotropic mobility analysis, it is noticed that the studied NFAs except dicyano-rhodanine terminal unit containing NFA, exhibit better electron mobility than the hole mobility, and therefore, they can be more promising electron transporting acceptor materials in the active layer of an organic photovoltaic cell. From the optical absorption analysis, it is noted that all the designed NFAs have the maximum absorption spectra ranging from 597 nm-730 nm, which lies in the visible region and near-infrared (IR) region of the solar spectrum. The computed light-harvesting efficiencies for the PM6 (thiophene derivative donor selected in our study):NFA blends are found to lie in the range of 0.96-0.99, which indicates efficient light-harvesting by the PM6:NFA blends during photovoltaic device operation.
Collapse
Affiliation(s)
- Labanya Bhattacharya
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2G2, Canada
| | - Sagar Sharma
- Department of Chemistry, S. B. Deorah College, Bora Service, Ulubari, Guwahati, 781007, AssamIndia
| | - Sridhar Sahu
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
21
|
Machine Learning Assisted Prediction of Power Conversion Efficiency of All-Small Molecule Organic Solar Cells: A Data Visualization and Statistical Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185905. [PMID: 36144642 PMCID: PMC9502131 DOI: 10.3390/molecules27185905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Organic solar cells are famous for their cheap solution processing. Their industrialization needs fast designing of efficient materials. For this purpose, testing of large number of materials is necessary. Machine learning is a better option due to cheaper prediction of power conversion efficiencies. In the present work, machine learning was used to predict power conversion efficiencies. Experimental data were collected from the literature to feed the machine learning models. A detailed data visualization analysis was performed to study the trends of the dataset. The relationship between descriptors and power conversion efficiency was quantitatively determined by Pearson correlations. The importance of features was also determined using feature importance analysis. More than 10 machine learning models were tried to find better models. Only the two best models (random forest regressor and bagging regressor) were selected for further analysis. The prediction ability of these models was high. The coefficient of determination (R2) values for the random forest regressor and bagging regressor models were 0.892 and 0.887, respectively. The Shapley additive explanation (SHAP) method was used to identify the impact of descriptors on the output of models.
Collapse
|
22
|
Kausar N, Murtaza S, Khalid M, Shoukat U, Asad M, Arshad MN, Asiri AM, Braga AA. Experimental and Quantum Chemical Approaches for Hydrazide-based Crystalline Organic Chromophores: Synthesis, SC-XRD, Spectroscopic and Nonlinear Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
High electron mobility due to extra π-conjugation in the end-capped units of non-fullerene acceptor molecules: a DFT/TD-DFT-based prediction. J Mol Model 2022; 28:278. [PMID: 36028595 DOI: 10.1007/s00894-022-05283-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). To enhance the open-circuit voltage, we have designed three new fullerene-free acceptor molecules with elongated π-conjugation in the end-capped units. Y-series-based newly designed molecules (CPSS-4F, CPSS-4Cl, CPSS-4CN) exhibited a narrow energy bandgap with high electron mobility. Red shift in the absorption spectrum with high intensities is also noted for designed molecules. Low binding and excitation energies of designed molecules favor easy excitation of exciton in the excited state. Further, CPSS-4F, CPSS-4Cl, and CPSS-4CN exhibited better open-circuit voltage with favorable molecular orbitals contributions. Transition density analysis (TDM) was also performed to locate the total transitions in the designed molecules. Outcomes of all analyses suggested that designed molecules are effective contributors to the active layer of organic solar cells.
Collapse
|
24
|
Theoretical designing of selenium heterocyclic non-fullerene acceptors with enhanced power conversion efficiency for organic solar cells: a DFT/TD-DFT-based prediction and understanding. J Mol Model 2022; 28:228. [DOI: 10.1007/s00894-022-05225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023]
|
25
|
Khan MU, Imran. M, Rehman MFU, Assiri MA, Mashhadi SMA, Akram MS, Lu C. Evaluating Zn-Porphyrin-Based Near-IR-Sensitive Non-Fullerene Acceptors for Efficient Panchromatic Organic Solar Cells. ChemistryOpen 2022; 11:e202200047. [PMID: 35997083 PMCID: PMC9396630 DOI: 10.1002/open.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Porphyrin-based non-fullerene acceptors (NFAs) have shown pronounced potential for assembling low-bandgap materials with near-infrared (NIR) characteristics. Herein, panchromatic-type porphyrin-based molecules (POR1-POR5) are proposed by modulating end-capped acceptors of a highly efficient porphyrin-based NFA PORTFIC(POR) for organic solar cells (OSCs). Quantum chemical structure-property relationship has been studied to discover photovoltaic and optoelectronic characteristics of POR1-POR5. Results show that optoelectronic properties of the POR1-POR5 are better in all aspects when compared with the reference POR. All proposed NFAs particularly POR5 proved to be the preferable porphyrin-based NIR sensitive NFA for OSCs applications owing to lower energy gap (1.56 eV), transition energy (1.11 eV), binding energy (Eb =0.986 eV), electron mobility (λe =0.007013Eh ), hole mobility (λh =0.004686 Eh ), high λmax =1116.27 nm and open-circuit voltage (Voc =1.96 V) values in contrast to the reference POR and other proposed NFAs. This quantum chemical insight provides sufficient evidence about excellent potential of the proposed porphyrin-based NIR sensitive NFA derivatives for their use in OSCs.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Department of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P.R. China
- Department of ChemistryUniversity of OkaraOkara56300Pakistan
| | - Muhammad Imran.
- Research Center for Advanced MaterialsKing Khalid UniversityP.O. Box 9004Abha61514Saudi Arabia
- Department of ChemistryFaculty of ScienceKing Khalid UniversityP.O. Box 9004Abha61413Saudi Arabia
| | | | - Mohammed A. Assiri
- Research Center for Advanced MaterialsKing Khalid UniversityP.O. Box 9004Abha61514Saudi Arabia
- Department of ChemistryFaculty of ScienceKing Khalid UniversityP.O. Box 9004Abha61413Saudi Arabia
| | | | - Muhammad Safwan Akram
- School of Health and Life SciencesTeesside UniversityMiddlesbroughTS1 3BAUK
- National Horizons CentreTeesside UniversityDarlingtonDL1 1HGUK
| | - Changrui Lu
- Department of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P.R. China
| |
Collapse
|
26
|
Majumdar S, Roy AK. Recent Advances in Cartesian-Grid DFT in Atoms and Molecules. Front Chem 2022; 10:926916. [PMID: 35936092 PMCID: PMC9354079 DOI: 10.3389/fchem.2022.926916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
In the past several decades, density functional theory (DFT) has evolved as a leading player across a dazzling variety of fields, from organic chemistry to condensed matter physics. The simple conceptual framework and computational elegance are the underlying driver for this. This article reviews some of the recent developments that have taken place in our laboratory in the past 5 years. Efforts are made to validate a viable alternative for DFT calculations for small to medium systems through a Cartesian coordinate grid- (CCG-) based pseudopotential Kohn-Sham (KS) DFT framework using LCAO-MO ansatz. In order to legitimize its suitability and efficacy, at first, electric response properties, such as dipole moment ( μ ), static dipole polarizability ( α ), and first hyperpolarizability ( β ), are calculated. Next, we present a purely numerical approach in CCG for proficient computation of exact exchange density contribution in certain types of orbital-dependent density functionals. A Fourier convolution theorem combined with a range-separated Coulomb interaction kernel is invoked. This takes motivation from a semi-numerical algorithm, where the rate-deciding factor is the evaluation of electrostatic potential. Its success further leads to a systematic self-consistent approach from first principles, which is desirable in the development of optimally tuned range-separated hybrid and hyper functionals. Next, we discuss a simple, alternative time-independent DFT procedure, for computation of single-particle excitation energies, by means of "adiabatic connection theorem" and virial theorem. Optical gaps in organic chromophores, dyes, linear/non-linear PAHs, and charge transfer complexes are faithfully reproduced. In short, CCG-DFT is shown to be a successful route for various practical applications in electronic systems.
Collapse
Affiliation(s)
| | - Amlan K. Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| |
Collapse
|
27
|
Kareem MQ, Jassim GS, Obaid RF, Shadhar MH, Kadhim MM, Almashhadani HA, Sarkar A. Nile red based dye D–π–A as a promising material for solar cell applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Maqsood N, Asif A, Ayub K, Iqbal J, Elnaggar AY, Mersal GAM, Ibrahim MM, El-Bahy SM. DFT study of alkali and alkaline earth metal-doped benzocryptand with remarkable NLO properties. RSC Adv 2022; 12:16029-16045. [PMID: 35733683 PMCID: PMC9136961 DOI: 10.1039/d2ra02209e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022] Open
Abstract
Strategies for designing remarkable nonlinear optical materials using excess electron compounds are well recognized in literature to enhance the applications of these compounds in nonlinear optics. In this study, density functional theory simulations are performed to study alkali and alkaline earth metal-doped benzocryptand using the B3LYP/6-31G+(d, p) level of theory. Vertical ionization energies (VIEs), reactivity parameters, interaction energies, and binding energies exposed the thermodynamic stability of these complexes. FMO analysis revealed that HOMO is located on alkali metals having polarized electrons, which are easy to excite. The doping strategy enhanced the charge transfer with low bandgap energy in the range of 0.68-2.23 eV, which is lower than that of the surface BC (5.50 eV). Also, the lower transition energies and higher oscillator strength indicate that these complexes exhibit excellent electronic and optical properties. Non-covalent interaction analysis suggested the presence of van der Waals interactions between dopants and surface. IR analysis provided information about the frequencies of stretching vibrations present in the complexes due to different bonds. UV-vis analysis revealed that all the newly designed excess electron complexes are transparent in the UV region and possessed maximum absorption in the visible and NIR region, ranging from 753.6 to 2150 nm, which is higher than the surface (244 nm). Thus, these complexes have a potential for high-performance NLO materials in the applications of optics. Natural bond orbital analysis (NBO), transition density matrix (TDM), electron density difference map (EDDM), and density of state (DOS) analyses were also performed to study the charge transfer properties. Moreover, these complexes possessed remarkable optoelectronic properties due to a significant increase in the isotropic linear polarizability (α iso) in the range of 629.59-1423.23 au. Further, these systems demonstrated an extraordinary large total first hyperpolarizability (β tl) in the range of 3695.55-910 706.43 au. The rationalization of hyperpolarizability by the two-level model reflected a noteworthy increase in β tl because of low transition energies (ΔE) and high transition dipole moment (Δμ). Thus, our results showed that alkali and alkaline earth metal-doped BC might be a competitor for efficient nonlinear optical properties with practical applications in the area of optoelectronics.
Collapse
Affiliation(s)
- Nimra Maqsood
- Department of Chemistry, University of Agriculture Faisalabad-38000 Pakistan
| | - Areeba Asif
- Department of Chemistry, University of Agriculture Faisalabad-38000 Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad-38000 Pakistan
| | - Ashraf Y Elnaggar
- Department of Food Science and Nutrition, College of Science, Taif University Taif 21944 P. O. Box 11099 Saudi Arabia
| | - Gaber A M Mersal
- Department of Chemistry, College of Science, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
29
|
Efficient designing of half-moon-shaped chalcogen heterocycles as non-fullerene acceptors for organic solar cells. J Mol Model 2022; 28:125. [PMID: 35459976 DOI: 10.1007/s00894-022-05116-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
One key strategy to further improve the power conversion efficiency (PCE) of organic solar cells (OSCs) is to incorporate various complementary functional groups in a molecule. Such strategies proved attractive for tuning the photovoltaic performances of the materials and can show a much higher absorption phenomenon with narrower band gaps. Despite the outstanding benefits, materials selection and their efficient modeling is also an extremely challenging job for the development of OSCs materials. In this manuscript, we proficiently developed an efficient series of small molecule-based non-fullerene acceptors (SM-NFAs) SN1-SN9 for OSCs and characterized by density functional theory (DFT) and time-dependent DFT (TD-DFT). The characteristics required to estimate electron and hole mobility, and open-circuit voltage (Voc) were investigated by optimizing the geometrical parameters, absorption spectra, exciton binding energy, frontier molecular orbitals (FMOs), electronic structures, and charge transfer rates. The outcomes of these materials showed that all newly constructed small-molecule-based non-fullerene acceptors exhibit broader and better absorption efficiency (λmax = 761 to 778 nm) and exciton dissociation, while much lower LUMO energy levels which may help to enhance the reorganizational energies. Further, a narrow bandgap also offers better photovoltaic properties. Hence, the designed molecules exhibited narrow bandgap values (Eg = 2.82 to 2.98 eV) which are lower than that of the reference molecule (3.05 eV). High Voc and photocurrent density values with lower excitation and binding energies eventually increase the PCEs of the OSC devices. The obtained results have shown that designed molecules could be effective aspirants for high-performance OSCs.
Collapse
|
30
|
In silico modelling of acceptor materials by End-capped and π-linker modifications for High-Performance organic solar Cells: Estimated PCE > 18%. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113555] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Mehboob MY, Hussain R, Jamil S, Ahmed M, Khan MU, Haroon M, Janjua MRSA. Physical‐organic aspects along with linear and nonlinear optical properties of benzene sulfonamide compounds: In silico analysis. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara Pakistan
| | - Saba Jamil
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry University of Agriculture Faisalabad Pakistan
| | - Mahmood Ahmed
- Division of Science and Technology University of Education Lahore Pakistan
| | | | - Muhammad Haroon
- Department of Chemistry King Fahd University of Petroleum and Minerals (KFUPM) Dhahran Saudi Arabia
| | | |
Collapse
|
32
|
Rasool A, Zahid S, Ans M, Muhammad S, Ayub K, Iqbal J. Bithieno Thiophene-Based Small Molecules for Application as Donor Materials for Organic Solar Cells and Hole Transport Materials for Perovskite Solar Cells. ACS OMEGA 2022; 7:844-862. [PMID: 35036751 PMCID: PMC8757340 DOI: 10.1021/acsomega.1c05504] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 05/05/2023]
Abstract
This quantum mechanical study focuses on the designing of twelve (MPAM1-MPAM12) bithieno thiophene (BTTI) central core-based small molecules to explore optoelectronic properties as donor candidates for organic solar cells (OSCs) and hole transport materials (HTMs) accompanied by enhanced charge mobility for perovskite solar cells (PSCs). MPAM1-MPAM6 have been designed by the substitution of thiophene-bridged end-capped acceptors on both side terminals of reference (MPAR). MPAM7-MPAM12 are tailored by adopting the same tactic on one side terminal only. MPW1PW91/6-311G (d,p) has been employed for all computational simulations. MPAM12 revealed the highest λmax at 639 nm in dichloromethane (DCM) solvent with the lowest E g of 1.78 eV and dipole moment (20.74 D) in the solvent phase, showing excellent miscibility as compared to the reference. All designed chromophores (MPAM1-MPAM12) demonstrated higher estimated V OC and power conversion efficiency (PCE) when compared to MPAR, suggesting their prominent operational efficiency. Among all, MPAM4 manifested the highest PCE (47.86%). MPAM2 portrayed the highest electron mobility (0.0041573 eV) and MPAM3 exhibited the highest hole mobility (0.0047178 eV). The outcomes highlight the adequacy of the planned strategies, paving a new route for the development of small-molecule HTMs for PSCs and donor contributors for OSCs.
Collapse
Affiliation(s)
- Alvina Rasool
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saba Zahid
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Ans
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shabbir Muhammad
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khurshid Ayub
- Department
of Chemistry, COMSAT University, Abbottabad Campus, KPK, Islamabad 22060, Pakistan
| | - Javed Iqbal
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
- Punjab
Bio-energy Institute, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
33
|
Yasmeen F, Alvi MU, Alvi Y, Khan MU, Yaqoob J, Hussain R, Alam MM, Imran M, Rehman MMU. Novel quad-rotor-shaped photovoltaic materials: first example of fused-ring non-fullerene acceptors with proficient photovoltaic properties for high-performance solar cells. J Mol Model 2021; 28:18. [PMID: 34962590 DOI: 10.1007/s00894-021-05000-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Development of novel materials for organic solar cells is a booming area of current research. Fused-ring electron accepters are the potential agents of revolution in organic photovoltaic devices and revealing high efficiency in organic solar cells. This study highlights the novel quad-rotor-shaped molecules as first example of efficient fused-ring non-fullerene acceptor materials with proficient photovoltaic parameters for their utilization in high-performance organic solar cells. First time, eight quad-rotor-shaped fused-ring electron accepters (QRFR-1-QRFR-8) are developed via modulating end-caps of experimentally synthesized (BFTT-TN) molecule (QRFR). Optoelectronic properties of proposed molecules are determined using frontier molecular orbitals (FMO), UV-Visible, density of state (DOS), overlap DOS (ODOS), transition density matrix (TDM) heat maps, open circuit voltage (Voc), binding energies (Eb), reorganization energy of electron (λe), hole (λh), charge transfer analysis, and compared with reference QRFR. All proposed fused-ring electron accepters disclose less energy gap and λmax in near IR region than QRFR after end-capped engineering. Highest Voc with respect to HOMOPM6-LUMOacceptor is found 1.66 V in QRFR-6 than QRFR (1.63 V). Eb values of QRFR-1-QRFR-8 are found better and comparable with QRFR. The λe is found smaller than QRFR in all molecules except QRFR-5. The proposed quad-rotor-shaped molecules exhibit proficient photovoltaic features and can serve as best candidate for organic solar cells when blended with PM6 film. This study not only enlightens the researchers to use end-capped reforms as effective tactic for designing materials, but also provides novel quad-rotor-shaped materials to experimentalist for synthesis and their usage in future application of organic solar cells.
Collapse
Affiliation(s)
- Fareeha Yasmeen
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | | | - Yusra Alvi
- Department of Management Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Junaid Yaqoob
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Mohammed Mujahid Alam
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | |
Collapse
|
34
|
Dai T, Nie Q, Lei P, Zhang B, Zhou J, Tang A, Wang H, Zeng Q, Zhou E. Effects of Halogenation on the Benzotriazole Unit of Non-Fullerene Acceptors in Organic Solar Cells with High Voltages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58994-59005. [PMID: 34851613 DOI: 10.1021/acsami.1c14317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-fullerene acceptors (NFAs) can be simply divided into three categories: A-D-A, A-DA'D-A, and A2-A1-D-A1-A2 according to their chemical structures. Benefiting from the easily modified 1,1-dicyanomethylene-3-indanone end groups, the halogenation on the first two types of materials has been proved to be very effective to modulate their optoelectronic properties and improve their photovoltaic performance. Hence, in this work, we systematically investigate the effect of halogenation on the classic NFA molecule of BTA3, which has the linear A2-A1-D-A1-A2-type backbone. After fluorination and chlorination, F-BTA3 and Cl-BTA3 have similar optical band gaps but lower energy levels than BTA3. When blending with a linear copolymer PE25 composed of benzodifuran and chlorinated benzotriazole (BTA) according to "Same-A-Strategy", the corresponding VOC of the halogenated NFAs gradually decreases (1.13 V for F-BTA3 and 1.09 V for Cl-BTA3), compared with that of the BTA3-based device (VOC = 1.22 V). This tendency mainly comes from the lower lowest unoccupied molecular orbital energy levels due to the strong electron-withdrawing ability of halogen atoms and the larger nonradiative energy loss. However, the power conversion efficiencies of the halogenated materials are slightly improved, from 9.08% for PE25: BTA3 to 10.45% for PE25: F-BTA3 and 10.75% for PE25: Cl-BTA, with the nonhalogenated solvent tetrahydrofuran as the processing solvent. The improved photovoltaic performance of F-BTA3 and Cl-BTA3 should come from the higher carrier mobility, weaker bimolecular recombination, and higher fluorescence quenching rate. This study illustrates that halogenation on the A1 unit is a promising strategy for developing novel and effective A2-A1-D-A1-A2-type NFAs.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingling Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Jialing Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Helin Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Anbarasan P, Arunkumar A, Shkir M. Computational investigations on efficient metal-free organic D-π-A dyes with different spacers for powerful DSSCs applications. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1994965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - A. Arunkumar
- Department of Physics, Periyar University, Salem, India
| | - Mohd Shkir
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, King Khalid University, Abha, Saudi Arabia
- School of Science and Technology, Glocal University, Saharanpur, UP, India
| |
Collapse
|
36
|
Khalid M, Khan MU, Ahmed S, Shafiq Z, Alam MM, Imran M, Braga AAC, Akram MS. Exploration of promising optical and electronic properties of (non-polymer) small donor molecules for organic solar cells. Sci Rep 2021; 11:21540. [PMID: 34728752 PMCID: PMC8564538 DOI: 10.1038/s41598-021-01070-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/17/2021] [Indexed: 11/08/2022] Open
Abstract
Non-fullerene based organic compounds are considered promising materials for the fabrication of modern photovoltaic materials. Non-fullerene-based organic solar cells comprise of good photochemical and thermal stability along with longer device lifetimes as compared to fullerene-based compounds. Five new non-fullerene donor molecules were designed keeping in view the excellent donor properties of 3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2ethylhexyl) benzo[1,2-:4,5-c']-dithiophene-4,8-dione thiophene-alkoxy benzene-thiophene indenedione (BDD-IN) by end-capped modifications. Photovoltaic and electronic characteristics of studied molecules were determined by employing density functional theory (DFT) and time dependent density functional theory (TD-DFT). Subsequently, obtained results were compared with the reference molecule BDD-IN. The designed molecules presented lower energy difference (ΔΕ) in the range of 2.17-2.39 eV in comparison to BDD-IN (= 2.72 eV). Moreover, insight from the frontier molecular orbital (FMO) analysis disclosed that central acceptors are responsible for the charge transformation. The designed molecules were found with higher λmax values and lower transition energies than BDD-IN molecule due to stronger end-capped acceptors. Open circuit voltage (Voc) was observed in the higher range (1.54-1.78 V) in accordance with HOMOdonor-LUMOPC61BM by designed compounds when compared with BDD-IN (1.28 V). Similarly, lower reorganization energy values were exhibited by the designed compounds in the range of λe(0.00285-0.00370 Eh) and λh(0.00847-0.00802 Eh) than BDD-IN [λe(0.00700 Eh) and λh(0.00889 Eh)]. These measurements show that the designed compounds are promising candidates for incorporation into solar cell devices, which would benefit from better hole and electron mobility.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Saeed Ahmed
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Mohammed Mujahid Alam
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo, 05508-000, Brazil
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
37
|
Deciphering the role of end-capped acceptor units for amplifying the photovoltaic properties of donor materials for high-performance organic solar cell applications. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Mehboob MY, Hussain R, Irshad Z, Farwa U, Adnan M, Muhammad S. Designing and Encapsulation of Inorganic Al12N12 Nanoclusters with Be, Mg, and Ca Metals for Efficient Hydrogen Adsorption: A Step Forward Towards Hydrogen Storage Materials. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanoclusters such as [Formula: see text][Formula: see text] have received increased attention due to their diverse applications in the fields of optoelectronics and energy storage. In this paper, we have investigated a series of alkaline earth metal (AEM)-encapsulated [Formula: see text][Formula: see text] nanoclusters for hydrogen adsorption. Thermodynamic adsorption parameters, optical and nonlinear optical properties were investigated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. Encapsulation of AEMs (Be, Mg and Ca) is an effective strategy to improve the NLO reaction and thermodynamic and adsorption properties of [Formula: see text][Formula: see text] nanoclusters. The adsorption energies ranging from [Formula: see text]26.57[Formula: see text]kJ/mol to [Formula: see text]213.33[Formula: see text]kJ/mol for the three guests (Be, Mg and Ca) capsulated [Formula: see text][Formula: see text] nanoclusters are observed. The adsorption energy is affected by the size of the nanocage. Therefore, Ca- and Mg-encapsulated cages show higher values of adsorption energy. Overall, an increase in adsorption energy ([Formula: see text][Formula: see text]kJ/mol to [Formula: see text]91.06[Formula: see text]kJ/mol) is observed for (Be, Mg and Ca) encapsulated [Formula: see text][Formula: see text] nanoclusters compared to untreated [Formula: see text][Formula: see text] and H2-[Formula: see text][Formula: see text] cages. Moreover, adsorption of hydrogen on AEMs encapsulated in [Formula: see text][Formula: see text] leads to a decrease in the HOMO-LUMO energy gap with an enhancement of linear and nonlinear hyperpolarizability. All hydrogen-adsorbed AEMs [Formula: see text][Formula: see text] nanocages exhibit large [Formula: see text] and [Formula: see text] values, suggesting that these systems are potential candidates for optical materials. Various geometrical parameters such as frontier molecular orbitals (FMOs), partial density of states, global quantum descriptor of reactivity, natural bond orbital testing and molecular electrostatic strength analyses were performed to investigate the thermodynamic stability of all the studied systems. The results obtained confirmed that the designed systems are suitable for hydrogen storage. Therefore, we recommend that these systems be investigated for their hydrogen storage and optical properties.
Collapse
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry, Chosun University, 501-759, Republic of Korea
| | - Ume Farwa
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University, 501-759, Republic of Korea
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
39
|
Khalid M, Khan MU, -Razia ET, Shafiq Z, Alam MM, Imran M, Akram MS. Exploration of efficient electron acceptors for organic solar cells: rational design of indacenodithiophene based non-fullerene compounds. Sci Rep 2021; 11:19931. [PMID: 34620948 PMCID: PMC8497501 DOI: 10.1038/s41598-021-99254-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
The global need for renewable sources of energy has compelled researchers to explore new sources and improve the efficiency of the existing technologies. Solar energy is considered to be one of the best options to resolve climate and energy crises because of its long-term stability and pollution free energy production. Herein, we have synthesized a small acceptor compound (TPDR) and have utilized for rational designing of non-fullerene chromophores (TPD1-TPD6) using end-capped manipulation in A2-A1-D-A1-A2 configuration. The quantum chemical study (DFT/TD-DFT) was used to characterize the effect of end group redistribution through frontier molecular orbital (FMO), optical absorption, reorganization energy, open circuit voltage (Voc), photovoltaic properties and intermolecular charge transfer for the designed compounds. FMO data exhibited that TPD5 had the least ΔE (1.71 eV) with highest maximum absorption (λmax) among all compounds due to the four cyano groups as the end-capped acceptor moieties. The reorganization energies of TPD1-TPD6 hinted at credible electron transportation due to the lower values of λe than λh. Furthermore, open circuit voltage (Voc) values showed similar amplitude for all compounds including parent chromophore, except TPD4 and TPD5 compounds. These designed compounds with unique end group acceptors have the potential to be used as novel fabrication materials for energy devices.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Eisha-Tul -Razia
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Mohammed Mujahid Alam
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
40
|
Designing of benzodithiophene (BDT) based non-fullerene small molecules with favorable optoelectronic properties for proficient organic solar cells. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113359] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Tariq R, Khera RA, Rafique H, Azeem U, Naveed A, Ayub AR, Iqbal J. Computational and theoretical study of subphthalocyanine based derivatives by varying acceptors to increase the efficiency of organic solar cells. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Hussain S, Chatha SAS, Hussain AI, Hussain R, Yasir Mehboob M, Mansha A, Shahzad N, Ayub K. A Theoretical Framework of Zinc-Decorated Inorganic Mg 12O 12 Nanoclusters for Efficient COCl 2 Adsorption: A Step Forward toward the Development of COCl 2 Sensing Materials. ACS OMEGA 2021; 6:19435-19444. [PMID: 34368531 PMCID: PMC8340102 DOI: 10.1021/acsomega.1c01473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 05/09/2023]
Abstract
Gas sensors are widely explored due to their remarkable detection efficiency for pollutants. Phosgene is a toxic gas and its high concentration in the environment causes some serious health problems like swollen throat, a change in voice, late response of nervous systems, and many more. Therefore, the development of sensors for quick monitoring of COCl2 in the environment is the need of the time. In this aspect, we have explored the adsorption behavior of late transition metal-decorated Mg12O12 nanoclusters for COCl2. Density functional theory at the B3LYP/6-31G(d,p) level is used for optimization, frontier molecular orbital analysis, dipole moment, natural bonding orbitals, bond lengths, adsorption energies, and global reactivity descriptor analysis. Decoration of Zn on pure Mg12O12 delivered two geometries named as Y1 and Y2 with adsorption energy values of -388.91 and -403.11 kJ/mol, respectively. Adsorption of COCl2 on pure Mg12O12 also delivered two geometries (X1 and X2) with different orientations of COCl2. The computed adsorption energy values of X1 and X2 are -44.92 and -71.32 kJ/mol. However, adsorption of COCl2 on Zn-decorated Mg12O12 offered two geometries named as Z1 and Z2 with adsorption energy values of -455.22 and -419.04 kJ/mol, respectively. These adsorption energy values suggested that Zn decoration significantly enhances the adsorption capability of COCl2 gas. Further, the narrow band gap and large dipole moment values of COCl2-adsorbed Zn-decorated Mg12O12 nanoclusters suggested that designed systems are efficient candidates for COCl2 adsorption. Global reactivity indices unveil the great natural stability and least reactivity of designed systems. Results of all analyses suggested that Zn-decorated Mg12O12 nanoclusters are efficient aspirants for the development of high-performance COCl2 sensing materials.
Collapse
Affiliation(s)
- Shahid Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | | | - Abdullah Ijaz Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | | | - Asim Mansha
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nabeel Shahzad
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
43
|
Muhammad Asif Iqbal M, Yasir Mehboob M, Hussain R, Adnan M, Irshad Z. Synergistic effects of fluorine, chlorine and bromine-substituted end-capped acceptor materials for highly efficient organic solar cells. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Khalid M, Shafiq I, Zhu M, Khan MU, Shafiq Z, Iqbal J, Alam MM, Braga AAC, Imran M. Efficient tuning of small acceptor chromophores with A1-π-A2-π-A1 configuration for high efficacy of organic solar cells via end group manipulation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Roy R, Ghosal A, Roy AK. A Simple Effective Δ SCF Method for Computing Optical Gaps in Organic Chromophores. Chem Asian J 2021; 16:2729-2739. [PMID: 34331415 DOI: 10.1002/asia.202100692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Photoluminescence effects in organic chromophores are of significant importance and requires precise description of low lying excited states. In this communication, we put forward an alternative time-independent DFT scheme for computing lowest single-particle excitation energy, especially for singlet excited state. This adopts a recently developed "virial"-theorem based model of singlet-triplet splitting which requires a DFT calculation on closed shell ground state and a restricted open-shell triplet excited state, followed by a simple 2 e - integral evaluation. This produces vertical excitation energies in small molecules, linear and non-linear polycyclic aromatic hydrocarbon and organic dyes in comparable accuracy to the TDDFT. We also explore the functional dependency of present method with three different functionals (B3LYP, wB97X and CAM-B3LYP) for polyenes and linear acenes. A systematic comparison with literature value illustrates the validity and usefulness of the present scheme in determining optical gap with fair computational cost.
Collapse
Affiliation(s)
- Raj Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India
| | - Abhisek Ghosal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India.,Present Address : Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, Maharastra, India
| | - Amlan K Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India
| |
Collapse
|
46
|
Mehboob MY, Hussain R, Irshad Z, Adnan M. Role of acceptor guests in tuning optoelectronic properties of benzothiadiazole core based non-fullerene acceptors for high-performance bulk-heterojunction organic solar cells. J Mol Model 2021; 27:226. [PMID: 34259943 DOI: 10.1007/s00894-021-04843-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Recently, end-capped acceptors tailoring approach has attracted many researchers because of unceasing higher power conversion efficiencies (PCEs) of resulted compounds. By keeping in view, the crucial role of NFAs in bulk-heterojunction OSCs, herein, we molecularly engineered five new non-fullerene acceptor materials (Y6A1-Y6A5) by modifying a recently synthesized Y6 molecule (R), having 18% power conversion efficiency when combined with D18 donor polymer. The structural-elemental connection, physical-chemical, optoelectronic, and photovoltaic characteristics of novel deigned and reference material (R) are studied with advanced quantum-chemical modulations. Density functional theory and time dependent-density functional theory has been employed through various basis sets to investigate the designed molecules theoretically. Interestingly, all of the newly modeled materials displayed lower excitation energies with lower HOMO-LUMO energy-gaps in-contrast with R molecule. Moreover, a red-shifted absorption and lower reorganizational energies of electron and hole are also a novel feature of these designed materials. The lower binding energy values of modeled materials offers better charge separation and high photo-current density (Jsc) as compared to R. Transition density analysis, open circuit voltage, and molecular electrostatic potential analysis suggested that end-capped acceptors alteration of R molecule is an efficient approach for tuning the optoelectronic properties of non-fullerene-based acceptor molecules (Y6A1-Y6A5). In last, composite study of donor: acceptor (D18:Y6A2) complex has also been carried-out to realize the charge transfer process at the donor-acceptor interface. After all investigations, we hope that our theoretical modeled materials are superior than Y6 molecule, therefore, we endorse these materials for the synthesis to prepare highly-efficient BHJ-OSCs devices.
Collapse
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
47
|
End-capped engineering of bipolar diketopyrrolopyrrole based small electron acceptor molecules for high performance organic solar cells. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Mehboob MY, Hussain F, Hussain R, Ali S, Irshad Z, Adnan M, Ayub K. Designing of Inorganic Al 12N 12 Nanocluster with Fe, Co, Ni, Cu and Zn Metals for Efficient Hydrogen Storage Materials. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogen is considered as one of the attractive environmentally friendly materials with zero carbon emission. Hydrogen storage is still challenging for its use in various energy applications. That’s why hydrogen gained more and more attention to become a major fuel of today’s energy consumption. Therefore, nowadays, hydrogen storage materials are under extensive research. Herein, efforts are being devoted to design efficient systems which could be used for future hydrogen storage purposes. To this end, we have employed density functional theory (DFT) to optimize the geometries of the designed inorganic Al[Formula: see text]N[Formula: see text] nanoclusters with transition metals (Fe, Co, Ni, Cu and Zn). Various positions of metal encapsulated Al[Formula: see text]N[Formula: see text] are examined for efficient hydrogen adsorption. After adsorption of H2 on late transition metals encapsulated Al[Formula: see text]N[Formula: see text] nanocluster, different geometric parameters like frontier molecular orbitals, adsorption energies and nature bonding orbitals have been performed for exploring the potential of metal encapsulated for hydrogen adsorption. Moreover, molecular electrostatic potential (MEP) analysis was also performed in order to explore the different charge separation upon H2 adsorption on metals encapsulated Al[Formula: see text]N[Formula: see text] nanoclusters. Also, global indices of reactivity like ionization potential, electron affinity, electrophilic index, chemical softness and chemical hardness were also examined by using DFT. The adsorption energy results suggested encapsulation of late transition metals in Al[Formula: see text]N[Formula: see text] nanocage efficiently enhancing the adsorption capability of Al[Formula: see text]N[Formula: see text] for hydrogen adsorption. Results of all analysis suggested that our designed systems are efficient candidates for hydrogen adsorption. Thus, we recommended a novel kind of systems for hydrogen storage materials.
Collapse
Affiliation(s)
| | - Fakhar Hussain
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Shaukat Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry, Chosun University, 501-759 Gwangju, Republic of Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University, 501-759 Gwangju, Republic of Korea
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
49
|
Hussain S, Chatha SAS, Hussain AI, Hussain R, Yasir Mehboob M, Mansha A, Shahzad N, Ayub K. In Silico Designing of Mg12O12 Nanoclusters with a Late Transition Metal for NO 2 Adsorption: An Efficient Approach toward the Development of NO 2 Sensing Materials. ACS OMEGA 2021; 6:14191-14199. [PMID: 34124442 PMCID: PMC8190788 DOI: 10.1021/acsomega.1c00850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 05/09/2023]
Abstract
Gas sensors are widely used for detection of environmental pollution caused by various environmental factors such as road traffic and combustion of fossil fuels. Nitrogen dioxide (NO2) is one of the leading pollutants of the present age, which causes a number of serious health issues including acute bronchitis, cough, and phlegm, particularly in children. Nowadays, researchers are focused on designing new sensor materials for detection and removal of NO2 from the environment. In this line, we have made an attempt to design NO2 sensing materials by using theoretical techniques. Here, we have reported decoration of Mg12O12 nanoclusters with a late transition metal (Cu) by employing density functional theory at the B3LYP/6-31G(d,p) basis set. The decoration of metal on Mg12O12 gives two geometries (M1 and M2) with adsorption energies of -363.81 and -384.09 kJ/mol, respectively. Adsorption of NO2 on pristine Mg12O12 expressed an adsorption energy value of -62.36 kJ/mol. Adsorption of NO2 on Cu-decorated Mg12O12 nanocages delivered two geometries (N1 and N2) with adsorption energies of -442.56 and -447.64 kJ/mol. Metal-decorated Mg12O12 nanoclusters offer better adsorption of NO2 as compared to pristine Mg12O12 . Adsorption of NO2 on Cu-Mg12O12 nanoclusters also causes narrowing of band gap of magnesium oxide nanoclusters. Large dipole moment, high Q NBO with large electrophilic index in NO2-Cu-Mg12O12 nanoclusters suggested that metal-decorated Mg12O12 nanoclusters are efficient candidates for NO2 adsorption. Different geometric parameters and results of global reactivity descriptors show that NO2-Cu-Mg12O12 nanoclusters are quite stable in nature with least reactivity. Thus, conceptualized systems are potential candidates for applications in NO2 sensing materials.
Collapse
Affiliation(s)
- Shahid Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | | | - Abdullah Ijaz Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara, Punjab 56300, Pakistan
| | | | - Asim Mansha
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nabeel Shahzad
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
50
|
Mehboob MY, Hussain R, Irshad Z, Adnan M. Designing of U‐shaped acceptor molecules for indoor and outdoor organic solar cell applications. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4210] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry Chosun University Gwangju South Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry Chosun University Gwangju South Korea
| |
Collapse
|