1
|
Al-Wahaibi L, El-Emam AA, S. M. Abdelbaky M, Garcia-Granda S, Maurya A, Pal M, Siddiqui Z, Shukla R, Pathak SK, Srivastava R, Shukla VK, Prasad O, Sinha L. Structural Characterization, Spectroscopic Profile, Molecular Docking, ADMET Properties, Molecular Dynamics Simulation Studies, and Molecular Mechanics Generalized Born Surface Area Analysis of 5-(Adamantan-1-yl)-4-butyl-2,4-dihydro-3 H-1,2,4-triazole-3-thione as a Potential COX Inhibitor. ACS OMEGA 2024; 9:26651-26672. [PMID: 38911725 PMCID: PMC11191079 DOI: 10.1021/acsomega.4c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Employing a synergistic combination of theoretical density functional theory (DFT) and experimental techniques, we conducted a comprehensive analysis elucidating the structural and pharmacological attributes of 5-(adamantan-1-yl)-4-butyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (5A4BT) as a potent COX inhibitor. The X-ray crystallographic data of 5A4BT showed the pivotal role played by weak interactions, notably π-π and C-H-π interactions, alongside hydrogen bonding, in orchestrating the intricate supramolecular architectures within the crystalline lattice. A quantitative analysis of the arrangement of the crystal structure, as well as both inter- and intramolecular interactions, was conducted using Hirshfeld surfaces and 2D fingerprint plots. Additionally, a comprehensive examination of the IR spectra was undertaken, employing both experimental methods and theoretical DFT techniques, to elucidate the vibrational characteristics of the compound. The strength of intermolecular N-H···S hydrogen bonding and charge transfer within the system was assessed through natural bonding orbital analysis. Moreover, Bader's atoms in molecules theory was employed to estimate the strength of intermolecular hydrogen bonds, revealing strong interactions within the 5A4BT dimer. The title compound exhibited binding affinities of -6.4 and -6.5 kcal/mol for COX1 (PDB 3KK6) and COX2 (1CX2) target proteins, respectively. For the first time, predictions regarding ADMET properties, drug-likeness, and toxicity, including favorable bioavailability, along with 100 ns molecular dynamics simulations, binding free energy, and energy decomposition per residue in the binding cavity of the protein from molecular mechanics generalized born surface area approach, collectively indicate the potential of 5A4BT as a nonselective COX inhibitor.
Collapse
Affiliation(s)
- Lamya
H. Al-Wahaibi
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ali A. El-Emam
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S. M. Abdelbaky
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Santiago Garcia-Granda
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Anushree Maurya
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Mamta Pal
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Zohra Siddiqui
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Raj Shukla
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Shilendra K. Pathak
- Department
of Physics, M. M. M. P. G. College, Deoria 274502, Uttar Pradesh, India
| | - Ruchi Srivastava
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Vikas K. Shukla
- Department
of Physics, Maharishi University of Information
Technology, Lucknow 226013, Uttar Pradesh, India
| | - Onkar Prasad
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Leena Sinha
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
2
|
Sellak S, Bensalah J, Ouaddari H, Safi Z, Berisha A, Draoui K, Barrak I, Guedira T, Bourhia M, Ibenmoussa S, Okla M, Dauelbait M, Habsaoui A, Harcharras M. Adsorption of Methylene Blue Dye and Analysis of Two Clays: A Study of Kinetics, Thermodynamics, and Modeling with DFT, MD, and MC Simulations. ACS OMEGA 2024; 9:15175-15190. [PMID: 38585065 PMCID: PMC10993278 DOI: 10.1021/acsomega.3c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
The purpose of this research was to learn more about the primary and secondary properties of Moroccan natural clay in an effort to better investigate innovative adsorbents and gain access to an ideal adsorption system. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis (SEM-EDX) and X-ray fluorescence were employed for identification. SEM revealed clay grains, including tiny particles and unevenly shaped sticks. First- and second-order rate laws, representing two distinct kinetic models, were applied in the kinetic approach. Adsorption of dye MB onto natural clay was studied, and the results agreed with the 2 s order model. The significant correlation coefficients support the inference that the adsorption process was governed by the Langmuir model. Subsequent DFT analyses demonstrated that the methylene blue dye's HOMO and LUMO surfaces are dispersed across most of the dye's components, pointing to a strong interaction with the clay. To determine how the dye might be adsorbed onto the clay, we employed quantum descriptors to locate its most nucleophilic and electrophilic centers. Endothermic reactions are evident during the MB adsorption process on clay, as indicated by the positive values of ΔH0 and ΔS0 (70.49 kJ mol-1of RC and 84.19 kJ mol-1 of OC and 10.45 J mol-1 K-1 of RC and 12.68 mol-1 K-1 of OC, respectively). Additionally dye molecules on the adsorbent exhibit a higher order of distribution than in the solution, indicating that the adsorption process is spontaneous.
Collapse
Affiliation(s)
- Sarra Sellak
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| | - Jaouad Bensalah
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| | - Hanae Ouaddari
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
- Chemistry
platform, UATRS, National Center for Scientific
and Technical Research (CNRST), Rabat 10500, Morocco
| | - Zaki Safi
- Chemistry
Department, Faculty of Science, Al Azhar
University-Gaza, P.O Box 1277 Gaza, Palestine
| | - Avni Berisha
- Department
of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000 Prishtina, Kosovo
| | - Khalid Draoui
- Laboratory
MSI, Faculty of Sciences, Abdelmalek Essaadi
University, Tetouan 93030, Morocco
| | - Ilias Barrak
- Hydrogen
Solutions - INNOVX, University Mohammed
VI Polytechnic, Ben Guerir 43150, Morocco
| | - Taoufiq Guedira
- Laboratory
of Organic Chemistry, Catalysis, and Environment. University of Ibn Tofail, Faculty of Science, Po Box 133, Kenitra 14000, Morocco
| | - Mohammed Bourhia
- Department
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
- Laboratory
of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty
of Medicine and Pharmacy, University Hassan
II, B. P. 5696, Casablanca, Morocco
| | - Samir Ibenmoussa
- Laboratory
of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier 34000 France
| | - Mohammad Okla
- Botany
and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Musaab Dauelbait
- Department of Scientific Translation, University
of Bahri, Bahri 11111, Sudan
| | - Amar Habsaoui
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| | - Mohamed Harcharras
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| |
Collapse
|
3
|
Hussain R, Rubab SL, Maryam A, Ashraf T, Arshad M, Lal K, Sumrra SH, Ashraf S, Ali B. Synthesis, Spectroscopic and Nonlinear Optical Properties, and Antimicrobial Activity of Cu(II), Co(II), and Ni(II) Complexes: Experimental and Theoretical Studies. ACS OMEGA 2023; 8:42598-42609. [PMID: 38024690 PMCID: PMC10652729 DOI: 10.1021/acsomega.3c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Currently, we report the preparation of transition metal complexes Co(II), Ni(II), and Cu(II) of hydrazone Schiff base ligands, which are obtained by the condensation reaction of substituted salicylaldehyde and hydrazines. The synthesized hydrazone ligands and their metal complexes were characterized by spectroscopic methods such as Fourier transform infrared (FT-IR), UV-vis, nuclear magnetic resonance (1H NMR and C13 NMR), and mass spectrometry analyses. All of the quantum chemistry calculations were performed using DFT executed in the Gaussian 09 software package. The geometry was optimized by using the density functional theory (DFT) approximation at the B3LYP level with a basis set of 6-31G (d, p). There was excellent agreement between the FT-IR values obtained experimentally and those obtained theoretically for the test compounds. It is worth noting that none of the optimized geometries for any of the Schiff base and metal complexes had any eigenvalues that were negative, indicating that these geometries represent the true minimum feasible energy surfaces. We also analyzed the electrostatic potential of the molecule and NBO calculation at the same level of theory. Gauss View 6 was utilized for the file organization of the input data. Gauss View 6.0, Avogadro, and Chemcraft were used to determine the data. Additionally, synthesized compounds were screened for antimicrobial activity against Gram-negative bacteria (Salmonella typhi, Escherichia coli) and Gram-positive bacteria (Bacillus halodurans, Micrococcus luteus) and two fungal strains (Aspergillus flavus, Aspergillus niger). These research findings have established the potential of ligands and their metal complexes as antimicrobial agents. Additionally, the compounds demonstrated promising nonlinear optical (NLO) properties, with potential applications across a wide range of contemporary technologies.
Collapse
Affiliation(s)
- Riaz Hussain
- Department
of Chemistry, The Education University Lahore
D.G Khan campus, Dera Ghazi Khan32200,Pakistan
| | - Syed Laila Rubab
- Department
of Chemistry, The Education University Lahore
D.G Khan campus, Dera Ghazi Khan32200,Pakistan
| | - Afifa Maryam
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| | - Tuba Ashraf
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| | - Muhammad Arshad
- Department
of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| | - Kiran Lal
- Department
of Chemistry, The Women University Multan, Multan 60000, Pakistan
| | - Sajjad H. Sumrra
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Shafaq Ashraf
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| | - Bakhat Ali
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| |
Collapse
|
4
|
Dhali P, Oishi AA, Das A, Hossain MR, Ahmed F, Roy D, Hasan MM. A DFT and QTAIM insight into ethylene oxide adsorption on the surfaces of pure and metal-decorated inorganic fullerene-like nanoclusters. Heliyon 2023; 9:e19407. [PMID: 37809619 PMCID: PMC10558507 DOI: 10.1016/j.heliyon.2023.e19407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
In this industrial era, the use of low-dimensional nanomaterials as gas sensors for environmental monitoring has received enormous interest. To develop an effective sensing method for ethylene oxide (EO), DFT computations are conducted using method ωB97X-D and B3LYP with 6-31G(d,p) basis set to evaluate the adsorption behavior of ethylene oxide gas on the surfaces of pristine, as well as Scandium and Titanium decorated B12N12, Al12N12, and Al12P12 nanocages. Several properties like structural, physical, and electronic are studied methodically to better understand the sensing behavior. Scandium-decorated aluminum phosphate and boron nitride nanocages were shown to perform better in terms of adsorption properties. The short recovery time observed in this study is beneficial for the repetitive use of the gas sensor. The Natural Bond Orbital and molecular electrostatic potential analysis demonstrated a substantial quantity of charge transfer from adsorbate to adsorbents. The bandgap alternation after adsorption shows an influence of adsorption on electronic properties. The interactions of adsorbate and adsorbents are further studied using the ultraviolet-visible predicted spectrum, and quantum theory of atoms in molecules all of which yielded promising findings.
Collapse
Affiliation(s)
- Palash Dhali
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Adita Afrin Oishi
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Antu Das
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mehade Hasan
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
5
|
Parveen S, Kumar S, Pal S, Yadav NP, Rajawat J, Banerjee M. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery. Int J Pharm 2023; 643:123212. [PMID: 37429561 DOI: 10.1016/j.ijpharm.2023.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Piperlongumine (PL) is a well-known bioactive alkaloid that has been reported as a potent anticancer molecule but has failed to provide potential activity in translational and clinical applications due to some drawbacks like low bioavailability, hydrophobicity, and rapid degradation. However, nano-formulation is a good choice to increase the bioavailability and enhance cellular uptake of PL. In this study, PL loaded nano-liposomes (NPL) were formulated using the thin-film hydration method and analyzed by Response Surface Methodology (RSM) in order to treat cervical cancer. The NPL were thoroughly characterized using particle size, PDI, zeta potential, drug loading capacity, encapsulation efficiency, SEM, AFM and FTIR. Different assays viz. MTT, AO/PI, DAPI, MMP, cell migration, DCFDA and apoptotic assay using Annexin V-FITC/PI were performed for anticancer potential of NPL in human cervical carcinoma cells (SiHa and HeLa). NPL showed enhanced cytotoxicity, diminished cell proliferation, reduced cell viability, enhanced nuclear condensation, reduction in mitochondrial membrane potential, inhibited cell migration, increased ROS level and promoted more apoptosis in both human cervical cancer cell lines. These findings demonstrated that NPL may be a potential therapeutic option for cervical cancer.
Collapse
Affiliation(s)
- Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Saurabh Kumar
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India
| | - Sarita Pal
- Bioprospection and Product Department Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP 226015, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Department Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP 226015, India.
| | - Jyotika Rajawat
- Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India.
| |
Collapse
|
6
|
Anticancerous and antioxidant properties of fabricated silver nanoparticles involving bio-organic framework using medicinal plant Blumea lacera. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
7
|
A Convergent Multicomponent Synthesis, Spectral Analysis, Molecular Modelling and Docking Studies of Novel 2H-pyrido[1,2-a]pyrimidine-2,4(3H)-dione Derivatives as Potential Anti-Cervical Cancer Agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Sain S, Jaiswal S, Jain S, Misra N, Srivastava A, Jendra R, Kishore D, Dwivedi J, Wabaidur SM, Islam MA, Sharma S. Synthesis and Theoretical Studies of Biologically Active Thieno Nucleus Incorporated Tri and Tetracyclic Nitrogen Containing Heterocyclics Scaffolds via Suzuki Cross-Coupling Reaction. Chem Biodivers 2022; 19:e202200540. [PMID: 36310125 DOI: 10.1002/cbdv.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/25/2022] [Indexed: 12/27/2022]
Abstract
A new series of thieno nucleus embellished trinuclear (19, 20) and tetranuclear (21-24) nitrogen heteroaryl have been synthesized by the Suzuki cross-coupling reaction using bis(triphenylphosphine)palladium(II) dichloride. All the synthesized compounds were characterized by IR, 1 H-NMR, 13 CNMR and Mass spectral properties. In vitro antibacterial studies of the synthesized compound were conducted using broth microdilution assay employing Gram-positive and Gram-negative strains and half-maximal inhibitory concentration (IC50 ) was determined. The result showed that compound 20 possess best antibacterial activity against S. aureus and E. coli with IC50 values of 60 μg mL-1 and 90 μg mL-1 . Further to determine the mode of antibacterial action, compounds 20 and 21 were examined for in vitro bacterial dehydrogenase inhibitory assay. To understand the binding affinity of the synthesized compounds, the docking study was performed in the bacterial dehydrogenase enzyme by AutoDock Vina software and structure was confirmed by Discovery Studio Visualizer. All the synthesized compounds were docked in a good manner within the active sites of the bacterial dehydrogenase enzyme and exhibited good binding energies.
Collapse
Affiliation(s)
- Shalu Sain
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Namita Misra
- Thakur H. N. Singh, PG College, Prayagraj, Uttar Pradesh, 211016, India
| | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ra Jendra
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | | | - Mohammad Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health University of Manchester, Manchester, United Kingdom
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
9
|
Hakmaoui Y, Eşme A, Ajlaoui RE, Belghiti ME, Zeroual A, Rakib EM. Efficient One-Pot Synthesis of Indolhydroxy Derivatives Catalyzed by SnCl2, DFT Calculations and Docking Study. CHEMISTRY AFRICA 2022. [PMCID: PMC9188358 DOI: 10.1007/s42250-022-00374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
10
|
Gangwar C, Yaseen B, Nayak R, Praveen S, Kumar Singh N, Sarkar J, Banerjee M, Mohan Naik R. Silver nanoparticles fabricated by tannic acid for their antimicrobial and anticancerous activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ortiz PD, Castillo-Rodriguez J, Tapia J, Zarate X, Vallejos GA, Roa V, Molins E, Bustos C, Schott E. A novel series of pyrazole derivatives toward biological applications: experimental and conceptual DFT characterization. Mol Divers 2021; 26:2443-2457. [PMID: 34724138 DOI: 10.1007/s11030-021-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
A new series of 13 pyrazole-derivative compounds with potential antifungal activity were synthetized with good yields. The series have the (E)-2-((1-(R)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol general structure and were characterized by means of X-ray diffraction, UV-Vis, FTIR, 1H-NMR, 13C-NMR, and two-dimensional NMR experiments. This experimental characterization was complemented by DFT simulations. A deep insight regarding molecular reactivity was accomplished employing a conceptual DFT approach. In this sense, dual descriptors were calculated at HF and DFT level of theory and GGV spin-density Fukui functions. The main reactive region within the molecules was mapped through isosurface and condensed representations. Finally, chemical descriptors that have previously shown to be close related to biological activity were compared within the series. Thus, higher values of chemical potential ω and electrophilicity χ obtained for compounds 10, 9, 8, 6 and 7, in this order, suggest that these molecules are the better candidates as biological agents.
Collapse
Affiliation(s)
- Pedro D Ortiz
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile
| | - Judith Castillo-Rodriguez
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Jorge Tapia
- Departamento de Ciencias Quı́micas y Biológicas, Universidad Bernardo O'Higgins, Facultad de Salud, General Gana, 1702, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile.
| | - Gabriel A Vallejos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Vanesa Roa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Carlos Bustos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
12
|
Salihović M, Pazalja M, Špirtović Halilović S, Veljović E, Mahmutović-Dizdarević I, Roca S, Novaković I, Trifunović S. Synthesis, characterization, antimicrobial activity and DFT study of some novel Schiff bases. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Chen HY, Yao CC, Tseng TY, Yeh YC, Huang HS, Yeh MY. Synthesis and photophysical properties of benzoxazolyl-imidazole and benzothiazolyl-imidazole conjugates. RSC Adv 2021; 11:40228-40234. [PMID: 35494111 PMCID: PMC9044771 DOI: 10.1039/d1ra08342b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Materials that have higher fluorescence emission in the solid state than molecules in solution have recently been paid more attention by the scientific community due to their potential applications in various fields. In this work, we newly synthesized benzoxazolyl-imidazole and benzothiazolyl-imidazole conjugates, which show aggregation-induced emission (AIE) features in their solid and aggregate states. It was found that oxygen and sulfur substitutions can dramatically influence the molecular structures and polarities of the dyes, leading to different degrees of the AIE phenomenon. The benzothiazolyl-imidazole molecule has lower polarity compared to that of benzoxazolyl-imidazole; therefore, the dye bearing a benzothiazolyl group shows higher emission intensity and dual emission in aqueous solution. Theoretical calculation results suggest that the benzothiazolyl-imidazole molecules might have electrostatic interactions between sulfur and nitrogen atoms, explaining the experimental observations of lower critical aggregation concentration and photophysical properties both in solution and in the solid state. The theoretical calculations agree with the experimental data, thus demonstrating a potent strategy to gain a deep understanding of the structure–property relationships to design solid-state fluorescent materials. The effect of heteroatoms on the structural and photophysical properties of donor-π-acceptor molecules, comprising imidazole and benzoxazolyl as well as imidazole and benzothiazolyl units, was investigated.![]()
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Chen-Chen Yao
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Tzu-Yu Tseng
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Yao-Chun Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - He-Shin Huang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| |
Collapse
|