1
|
Nocchetti M, Piccinini M, Pietrella D, Antognelli C, Ricci M, Di Michele A, Jalaoui L, Ambrogi V. The Effect of Surface Functionalization of Magnesium Alloy on Degradability, Bioactivity, Cytotoxicity, and Antibiofilm Activity. J Funct Biomater 2025; 16:22. [PMID: 39852578 PMCID: PMC11765666 DOI: 10.3390/jfb16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Magnesium alloys are promising biomaterials to be used as temporary implants due to their biocompatibility and biodegradability. The main limitation in the use of these alloys is their rapid biodegradation. Moreover, the risk of microbial infections, often following the implant surgery and hard to eradicate, is another challenge. Thus, with the aim of reducing biodegradability and conferring antibiofilm activity, sheets of the magnesium alloy AZ31 were properly modified with the introduction of hydroxy (polyethyleneoxy)propyl silane (PEG) and quaternary ammonium silane chains (QAS). The derivatized sheets were characterized by ATR-FTIR spectroscopy and their performances as concerns their stability, Mg2+ in vitro release, and in vitro bioactivity were evaluated as well. The results showed an increased stability with a reduction in corrosion, a slower Mg2+ ion release, and the formation of hydroxyapatite in the sheets' surface. In addition, cytotoxicity evaluations were carried out on human gingival fibroblasts showing that the AZ31 and AZ31-PEG plates had good cytocompatibility. Finally, the antibiofilm activity on Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa was carried out by evaluating the capacity of inhibition of biofilm adhesion and formation. The results demonstrated a significant reduction in biofilm formation by Staphylococcus epidermidis on AZ31-QAS.
Collapse
Affiliation(s)
- Morena Nocchetti
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy; (M.N.); (M.P.); (M.R.); (L.J.)
| | - Michela Piccinini
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy; (M.N.); (M.P.); (M.R.); (L.J.)
| | - Donatella Pietrella
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (D.P.); (C.A.)
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (D.P.); (C.A.)
| | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy; (M.N.); (M.P.); (M.R.); (L.J.)
| | | | - Layla Jalaoui
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy; (M.N.); (M.P.); (M.R.); (L.J.)
| | - Valeria Ambrogi
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy; (M.N.); (M.P.); (M.R.); (L.J.)
| |
Collapse
|
2
|
Dong J, Liu H. Silsesquioxane-crosslinked chitosan aerogels with highly selective adsorption for Au(III). Int J Biol Macromol 2025; 296:139686. [PMID: 39793813 DOI: 10.1016/j.ijbiomac.2025.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
A novel water-soluble silsesquioxane precursor (DEA-GSQ) was prepared by the nucleophilic substitution reaction of diethanolamine (DEA) with glycidyloxypropyl substituted silsesquioxane (GSQ). DEA-GSQ can be used to crosslink chitosan to prepare hybrid aerogels (DGCA). The hybrid aerogels were fully characterized using Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, compression performance test and Mercury intrusion porosimetry. The hybrid aerogel shows selective adsorption for Au(III) with the saturated adsorption capacity of 918.16 mg/g at pH = 6. Pseudo-second-order model and Langmuir model could describe the adsorption process well. It was found that Au(III) was mostly reduced to Au(0) by CN bond during the adsorption process. Furthermore, an adsorption device was designed to remove Au(III) based on this hybrid aerogel, laying the foundation for the adsorption of Au(III) in practical applications.
Collapse
Affiliation(s)
- Jiuxiao Dong
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
3
|
Yan B, Dai Y, Xin L, Li M, Zhang H, Long H, Gao X. Research progress in the degradation of printing and dyeing wastewater using chitosan based composite photocatalytic materials. Int J Biol Macromol 2024; 263:130082. [PMID: 38423910 DOI: 10.1016/j.ijbiomac.2024.130082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The surge in economic growth has spurred the expansion of the textile industry, resulting in a continuous rise in the discharge of printing and dyeing wastewater. In contrast, the photocatalytic method harnesses light energy to degrade pollutants, boasting low energy consumption and high efficiency. Nevertheless, traditional photocatalysts suffer from limited light responsiveness, inadequate adsorption capabilities, susceptibility to agglomeration, and hydrophilicity, thereby curtailing their practical utility. Consequently, integrating appropriate carriers with traditional photocatalysts becomes imperative. The combination of chitosan and semiconductor materials stands out by reducing band gap energy, augmenting reactive sites, mitigating carrier recombination, bolstering structural stability, and notably advancing the photocatalytic degradation of printing and dyeing wastewater. This study embarks on an exploration by initially elucidating the technical principles, merits, and demerits of prevailing printing and dyeing wastewater treatment methodologies, with a focal emphasis on the photocatalytic approach. It delineates the constraints encountered by traditional photocatalysts in practical scenarios. Subsequently, it comprehensively encapsulates the research advancements and elucidates the reaction mechanisms underlying chitosan based composite materials employed in treating printing and dyeing wastewater. Finally, this work casts a forward-looking perspective on the future research trajectory of chitosan based photocatalysts, particularly in the realm of industrial applications.
Collapse
Affiliation(s)
- Boting Yan
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Yiming Dai
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Lili Xin
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Mingyang Li
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hao Zhang
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hongming Long
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Xiangpeng Gao
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China.
| |
Collapse
|
4
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
5
|
Saigl Z, Tifouti O, Alkhanbashi B, Alharbi G, Algamdi H. Chitosan as adsorbent for removal of some organic dyes: a review. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Rahimi B, Rahimi NR, Ebrahimi A. Catalytic reduction of hazardous acid orange 10 dye by BiVO4/TiO2 nanocrystalline heterojunction and influence of aeration, FeSO4, H2O2 and FeCl3 on removal efficiency: A novel and environmentally friendly process. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
8
|
Removal of direct dyes by coagulation: Adaptability and mechanism related to the molecular structure. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1056-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Amadi EV, Venkataraman A, Papadopoulos C. Nanoscale self-assembly: concepts, applications and challenges. NANOTECHNOLOGY 2022; 33. [PMID: 34874297 DOI: 10.1088/1361-6528/ac3f54] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/02/2021] [Indexed: 05/09/2023]
Abstract
Self-assembly offers unique possibilities for fabricating nanostructures, with different morphologies and properties, typically from vapour or liquid phase precursors. Molecular units, nanoparticles, biological molecules and other discrete elements can spontaneously organise or form via interactions at the nanoscale. Currently, nanoscale self-assembly finds applications in a wide variety of areas including carbon nanomaterials and semiconductor nanowires, semiconductor heterojunctions and superlattices, the deposition of quantum dots, drug delivery, such as mRNA-based vaccines, and modern integrated circuits and nanoelectronics, to name a few. Recent advancements in drug delivery, silicon nanoelectronics, lasers and nanotechnology in general, owing to nanoscale self-assembly, coupled with its versatility, simplicity and scalability, have highlighted its importance and potential for fabricating more complex nanostructures with advanced functionalities in the future. This review aims to provide readers with concise information about the basic concepts of nanoscale self-assembly, its applications to date, and future outlook. First, an overview of various self-assembly techniques such as vapour deposition, colloidal growth, molecular self-assembly and directed self-assembly/hybrid approaches are discussed. Applications in diverse fields involving specific examples of nanoscale self-assembly then highlight the state of the art and finally, the future outlook for nanoscale self-assembly and potential for more complex nanomaterial assemblies in the future as technological functionality increases.
Collapse
Affiliation(s)
- Eberechukwu Victoria Amadi
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Anusha Venkataraman
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Chris Papadopoulos
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
10
|
Esmaeilian A, O'Shea KE. Application of dimensional analysis in sorption modeling of the styryl pyridinium cationic dyes on reusable iron based humic acid coated magnetic nanoparticles. CHEMOSPHERE 2022; 286:131699. [PMID: 34358892 DOI: 10.1016/j.chemosphere.2021.131699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Cationic dyes exist in various industrial wastewaters and removal prior to discharge is necessary due to their carcinogenic behavior which poses a serious threat to human health. Iron based humic acid coated magnetic nanoparticles (HA-MNPs) were evaluated for the removal of 2-[4-(dimethylamino) styryl]-1-methylpyridinium iodide (2-ASP) as a model compound for cationic styryl pyridinium dyes from aqueous media. HA-MNPs were prepared by co-precipitation and characterized. The adsorption of 2-ASP, measured by fluorescence, demonstrates HA-MNPs are efficient for the 2-ASP removal with a maximum adsorption capacity of ~8 mg/g. Kinetic behavior and equilibrium studies showed the adsorption process fits with pseudo 2nd order and Langmuir isotherm models. The adsorption is relatively fast with ~70% of the adsorption complete within 30 min. The overall removal increases by increasing solution pH. The observed increase in adsorption can be assigned to an enhanced electrostatic attraction between the positively charged 2-ASP and the increase in the negative charge on the HA-MNPs surface as a function of increasing solution pH. Effective and repetitive regeneration of the HA-MNPs was achieved using NaOH treatment of saturated sorbent. Regeneration of HA-MNPs showed that removal efficiency remains consistently high after five consecutive cycles. Dimensional analysis suggested that initial concentration/sorbent dose ratio should be considered for accurate sorption modeling confirmed by experimental data. Then generalized empirical models for isothermal study and removal efficiency prediction were accurately deduced. This finding will help researchers in sorption studies to design their experiments more efficiently and to develop improved empirical models in removal prediction.
Collapse
Affiliation(s)
- Anahita Esmaeilian
- Department of Chemistry and Biochemistry, Florida International University, 11200, SW 8th Street, Miami, FL, 33199, USA.
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, 11200, SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
11
|
Fang Y, He H, Dong K, Yang J, Qin Z. Preparation and adsorption properties of hyperbranched polyethyleneimine-cellulose nanofiber aerogel. NEW J CHEM 2022. [DOI: 10.1039/d1nj06156a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel cellulose-based aerogel was prepared by a chemical cross-linking reaction and hydrogen bonding between cellulose nanofibers (CNF), polyethylene glycol diglycidyl ether (PEGDE), and hyperbranched polyethyleneimine (HPEI).
Collapse
Affiliation(s)
- Yanyuan Fang
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Hua He
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Kaiqiang Dong
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Jisheng Yang
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Zhiyong Qin
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| |
Collapse
|
12
|
Kazemi-Andalib F, Mohammadikish M, Divsalar A, Sahebi U. Hollow microcapsule with pH-sensitive chitosan/polymer shell for in vitro delivery of curcumin and gemcitabine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Obulapuram P, Arfin T, Mohammad F, Kumari K, Khiste SK, Al-Lohedan HA, Chavali M. Surface-Enhanced Biocompatibility and Adsorption Capacity of a Zirconium Phosphate-Coated Polyaniline Composite. ACS OMEGA 2021; 6:33614-33626. [PMID: 34926909 PMCID: PMC8674990 DOI: 10.1021/acsomega.1c04490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 05/25/2023]
Abstract
The present study deals with the synthesis, characterization, and testing of a novel composite, zirconium(IV) phosphate-coated polyaniline (ZrPO4@PANI), toward the adsorption- and surface-controlled toxicity applications. Following the synthesis of the ZrPO4@PANI composite using the sol-gel route, various characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, and powder X-ray diffraction were employed to confirm its surface functionality, morphology and agglomeration, and crystallinity and crystal nature, respectively. The composite was found to be effective toward the adsorptive removal of the methylene blue dye (an organic pollutant) as against the changes in the dye concentration, dose, pH, and so forth. Also, to understand the MB adsorption kinetics, the experimental data were evaluated using the Langmuir and Freundlich models and the results were described in accordance with the Langmuir isotherm model (an adsorption capacity of 120.48 mg/g at ambient temperature). In addition, the tests conducted using pseudo-first- and pseudo-second-order kinetic models confirmed the existence of pseudo-second-order rates. Furthermore, the calculation of thermodynamic parameters for the MB adsorption, namely, changes in enthalpy, entropy, and Gibbs' free energy, exhibited a spontaneous, feasible, and exothermic nature. Finally, the comparative studies of in vitro toxicity and flow cytometry confirmed that the copresence of ZrPO4 along with PANI significantly improved the biocompatibility. The outcome of the experimental results implies that the composite is capable enough of serving as the safe and low-cost adsorbent, in addition to supporting the effective capping of the surface toxicity of PANI.
Collapse
Affiliation(s)
- Prasanna
Kumar Obulapuram
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, Parktown, 7 York Road, Johannesburg 2193, South Africa
| | - Tanvir Arfin
- Hyderabad
Zonal Centre, CSIR-National Environmental
Engineering Research Institute (CSIR-NEERI), IICT Campus, Tarnaka, Hyderabad 500007, Telangana, India
| | - Faruq Mohammad
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Kanchan Kumari
- Kolkatta
Zonal Centre, CSIR-National Environmental
Engineering Research Institute (CSIR-NEERI), Kolkata 700107, West Bengal, India
| | - Sachin K. Khiste
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hamad A. Al-Lohedan
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Murthy Chavali
- Office
of
the Dean (Research) & Division of Chemistry, Department of Science,
Faculty of Science & Technology, Alliance
University, Chandapura-Anekal
Main Road, Bengaluru 562106, Karnataka, India
| |
Collapse
|
14
|
Yu H, Oh S, Han Y, Lee S, Jeong HS, Hong HJ. Modified cellulose nanofibril aerogel: Tunable catalyst support for treatment of 4-Nitrophenol from wastewater. CHEMOSPHERE 2021; 285:131448. [PMID: 34329132 DOI: 10.1016/j.chemosphere.2021.131448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
4-Nitrophenol (4-NP) is a hazardous aromatic compound widely used for various industries. Catalytic reduction of 4-NP using metal nanoparticles (NPs) is a highly effective method to treat 4-NP from waste effluent. Even though lots of methods have investigated to prepare efficient metal NPs composites, the nano and/or micro size of composites makes it hard to recover after wastewater treatment, limiting its practical use. Here, we fabricate 3-dimensional polyethylene imine grafted cellulose nanofibril (CNF-PEI) aerogel as a porous support material for platinum (Pt) NPs to practically and effectively treat 4-NP from wastewater. The Pt NPs are formed in-situ mode on cylindrical CNF-PEI aerogel by adsorption reaction with amine groups of PEI and subsequently reduction with NaBH4. Control of PEI grafting density and the initial concentration of Pt ions allows manipulation of the loading mass, size, and distribution of Pt NPs on 3D scaffold of CNF-PEI aerogel. The composite aerogel shows high catalytic activity for conversion of 4-NP. The 4-NP conversion activity is strongly affected by the size of Pt NPs and effective surface area of aerogels. The 2.74 nm size Pt NPs with even distribution in the aerogel show fast reaction kinetics (k = 0.12 min-1). Finally, 4-NP reduction efficiency does not decrease during 5 times reuse cycle of Pt NPs loaded CNF-PEI aerogel. This CNF-PEI aerogel loaded with Pt NPs is recovered easily from wastewater after treatment, so it is reusable and offers high potential as a practical recyclable environmental catalyst.
Collapse
Affiliation(s)
- Hayoung Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong Ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-Dong), Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Suryun Oh
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong Ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Yosep Han
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132, Republic of Korea
| | - Sungju Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong Ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong Ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea.
| | - Hye-Jin Hong
- Department of Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
15
|
Basta AH, Lotfy VF, Micky JA, Salem AM. Hydroxypropylcellulose-based liquid crystal materials. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Ding RH, Xu X, Huang C, Ma L, Ye F, Xu L, Wang ZQ, Ma HJ. Development of a Fibrous Adsorbent Prepared Via Green Vapor-Phase Grafting Polymerization for Uranium Extraction. ACS OMEGA 2021; 6:29675-29684. [PMID: 34778639 PMCID: PMC8582034 DOI: 10.1021/acsomega.1c04048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 05/29/2023]
Abstract
Owing to many problems of the detriment by large amount of organic reagents, high cost and difficulty of industrialization, development of high-efficiency economical technologies for uranium extraction is an irresistible trend to support steady supply of nuclear energy. Herein, a novel fibrous adsorbent, named as AO-HPE fibers, was prepared by introduction of amidoxime groups using the green vapor-phase grafting polymerization (VPGP) technology of monomer acrylonitrile (AN). Gaseous AN was grafted onto the ultra high molecular weight polyethylene (UHMWPE) fibers at 80 °C in the enclosed evaporation and condensation reflux system. The innovative technology not only endowed synthetic process high monomer utilization ratio but also excellent environmental friendliness. The AO-HPE fibers exhibited an appreciable calculated maximum adsorption capacity (Q m) of 1144.94 mg·g-1 in uranium solution and an adsorption capacity of 14.11 mg·g-1 in simulated seawater. Meanwhile, the higher uranium selectivity than main competing ion vanadium (adsorption mass ratio was almost 5) was achieved. The adsorption process accorded closely with chemisorption mechanism. This work provided a novel idea for the synthetic method of adsorbents for uranium extraction, and inspired the sustainable technologies for grafting polymerization of monomer AN.
Collapse
Affiliation(s)
- Ren-Hao Ding
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Xu
- Center
for Molecular Imaging and Translational Medicine, School of Public
Health, Xiamen University, Xiamen 361102, China
| | - Chen Huang
- Shanghai
Applied Radiation Institute and Key Laboratory of Organic Compound
Pollution Control Engineering (MOE), Shanghai
University, Shanghai 200444, China
| | - Lin Ma
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ye
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Xu
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Zi-Qiang Wang
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hong-Juan Ma
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai
Applied Radiation Institute and Key Laboratory of Organic Compound
Pollution Control Engineering (MOE), Shanghai
University, Shanghai 200444, China
- Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
17
|
Han D, Zhao H, Gao L, Qin Z, Ma J, Han Y, Jiao T. Preparation of carboxymethyl chitosan/phytic acid composite hydrogels for rapid dye adsorption in wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Tang B, Peng G, Luo D, Zhou X. Preparation and Adsorption Properties of Soybean Dreg/Hydrocalumite Composites. ACS OMEGA 2021; 6:27491-27500. [PMID: 34693170 PMCID: PMC8529653 DOI: 10.1021/acsomega.1c04460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
The application of biomass-based composites in the field of adsorption has attracted extensive attention. Herein, soybean dreg/hydrocalumite composites were prepared by in situ self-assembly from soybean dregs and applied to the adsorption of Congo Red (CR). The composites were characterized by scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and N2 physical adsorption-desorption. The results showed that the adsorption property of soybean dregs/hydrocalumite for CR was better than that of soybean dregs or hydrocalumite. Effects of preparation and adsorption conditions on the adsorption of CR by soybean dregs/hydrocalumite were also investigated. The removal rate of soybean dregs/hydrocalumite (30%BD-LDH) prepared under the optimized conditions reached 97.4% with a 486.8 mg·g-1 adsorption capacity. Also, the adsorption capacity of 30%BD-LDH was about 2.4 times and 3.0 times that of hydrocalumite and soybean dregs, respectively. In addition, the adsorption process of CR by 30%BD-LDH was more in line with the pseudo-second-order kinetic and Langmuir isothermal models.
Collapse
Affiliation(s)
- Bei Tang
- Department
of Food and Chemical Engineering, Shaoyang
University, Shaoyang, Hunan 422000, P. R. China
| | - Guanping Peng
- Department
of Food and Chemical Engineering, Shaoyang
University, Shaoyang, Hunan 422000, P. R. China
| | - Deyi Luo
- Hunan
Provincial Key Laboratory of Soybean Products Processing and Safety
Control, Shaoyang, Hunan 422000, P.
R. China
| | - Xi Zhou
- Department
of Food and Chemical Engineering, Shaoyang
University, Shaoyang, Hunan 422000, P. R. China
| |
Collapse
|
19
|
Waste polystyrene foam – Chitosan composite materials as high-efficient scavenger for the anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
|
21
|
D’Souza JN, Nagaraja G, Meghana Navada K, Kouser S, Nityasree B, Manasa D. An ensuing repercussion of solvent alteration on biological and photocatalytic efficacy of Emilia sonchifolia (L.) phytochemicals capped zinc oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Li N, Wang R, Wang C, Gao J, Liu Z, Gu J, Jiao T. Self-assembled photo-responsive black phosphorus-azobenzene composite Langmuir films with chemical gas sensor and photoelectric conversion applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Liu B, Liu J, Huang D, Pei D, Wei J, Di D. Synthesis of boric acid-functionalized microspheres and their adsorption properties for flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Li S, Zeng W, Ren Z, Jia Z, Wu G, Peng Y. Performance difference of hydrated phosphorophilic metal oxides in modifying diatomite and recovering phosphorus from wastewater. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Li C, Marin L, Cheng X. Chitosan based macromolecular probes for the selective detection and removal of Fe 3+ ion. Int J Biol Macromol 2021; 186:303-313. [PMID: 34256071 DOI: 10.1016/j.ijbiomac.2021.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
Chitosan has been widely used due to its biodegradable, cost-effective and environmentally friendly properties. Modification of chitosan attracts much attention as promising methods to detect and remove organic and inorganic pollutants. In this work, chitosan-based macromolecular probes were designed and synthesized. The probes can detect Fe3+ in the presence of other metal ions. The detection mechanism is investigated as well. The probe's fluorescence quenching upon the addition of Fe3+ ion could be ascribed to the complexation between the electron-deficient ion Fe3+ and "C=N" (electron-rich group) of fluorescent chitosan probes. What's more, the obtained fluorescent macromolecular probes can be used for the removal of Fe3+ in solution. The probes could adsorb the Fe3+ in solution and the removal efficiency can reach as high as 62.0% while the removal efficiency of original chitosan is only 16.0%. The probes have good selective detection for Fe3+ and the detection limit reaches 1.2 μM.
Collapse
Affiliation(s)
- Congwei Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
26
|
Li S, Zhou R, Zhao W, Du H. Synthesis of novel acyclic and multiple phenyl iron tetraamino ligand catalysts and its catalytic activity for degradation of dye wastewater by H
2
O
2. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shun‐Lai Li
- College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Run Zhou
- College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Wei‐Jing Zhao
- College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Hong‐Guang Du
- College of Chemistry Beijing University of Chemical Technology Beijing China
| |
Collapse
|
27
|
Abou Taleb MF, Abou El Fadl FI, Albalwi H. Adsorption of toxic dye in wastewater onto magnetic NVP/CS nanocomposite hydrogels synthesized using gamma radiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Ren B, Miao J, Wang S, Xu Y, Zhai Z, Dong X, Liu Z. Nitrogen-rich melamine-based carbon nanosheets prepared via polyvinyl pyrrolidone/ammonia chloride-mediate strategy as an excellent adsorbent for methylene blue adsorption. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Self-assembled Au/Fe3O4 nanoparticle-loaded phytic acid-graphene oxide composite foam with highly efficient catalytic performance for p-nitrophenol and o-nitroaniline organic pollutants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Jiang Y, Li Q, Li X, Wang X, Dong S, Li J, Hou L, Jiao T, Wang Y, Gao F. Three-Dimensional Network Pd-Ni/γ-Al 2O 3 Catalysts for Highly Active Catalytic Hydrogenation of Nitrobenzene to Aniline under Mild Conditions. ACS OMEGA 2021; 6:9780-9790. [PMID: 33869958 PMCID: PMC8047756 DOI: 10.1021/acsomega.1c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 05/25/2023]
Abstract
In view of the current situation of high cost and low catalytic efficiency of the commercial Pd-based catalysts, adding transition metals (Ni, Co, etc.) to form the Pd-M bimetallic catalyst not only reduces the consumption of Pd but also greatly improves the catalytic activity and stability, which has attracted increasing attention. In this work, the three-dimensional network Pd-Ni bimetallic catalysts were prepared successfully by a liquid-phase in situ reduction method with the hydroxylated γ-Al2O3 as the support. Through investigating the effects of the precursor salt amount, reducing agent concentration, stabilizer concentration, and reducing stirring time on the synthesis of the Pd-Ni nanocatalyst, the three-dimensional network Pd-Ni bimetallic nanostructures with four different atomic ratios were prepared under an optimal condition. The obtained wire-like Pd-Ni catalysts have a uniform diameter size of about 5 nm and length up to several microns. After closely combining with the hydroxylated γ-Al2O3, the supported Pd-Ni/γ-Al2O3 catalysts exhibit nearly 100% conversion rate and selectivity for the hydrogenation of nitrobenzene to aniline at low temperature and normal pressure. The stability testing of the supported Pd-Ni/γ-Al2O3 catalysts shows that the conversion rate still remained above 99% after 10 cycles. There is no doubt that the supported catalysts show significant catalytic efficiency and recyclability, which provides important theoretical basis and technical support for the preparation of low-cost, highly efficient catalysts for the hydrogenation of nitrobenzene to aniline.
Collapse
Affiliation(s)
- Yang Jiang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Qian Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Xi Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Xinyi Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Sen Dong
- Coal
Chemical R&D Center of Kailuan Group, Tangshan 063611, China
- Hebei
Provincial Technology Innovation Centre of Coal-based Materials and
Chemicals, Tangshan 063018, China
| | - Jianhua Li
- Coal
Chemical R&D Center of Kailuan Group, Tangshan 063611, China
- Hebei
Provincial Technology Innovation Centre of Coal-based Materials and
Chemicals, Tangshan 063018, China
| | - Li Hou
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Yatao Wang
- Coal
Chemical R&D Center of Kailuan Group, Tangshan 063611, China
- Hebei
Provincial Technology Innovation Centre of Coal-based Materials and
Chemicals, Tangshan 063018, China
| | - Faming Gao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| |
Collapse
|
31
|
Comparison of visual detection of melamine by AuNPs sol prepared in marine and terrestrial plant extracts. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Green Synthesis of Iron Nanoparticles Using Green Tea and Its Removal of Hexavalent Chromium. NANOMATERIALS 2021; 11:nano11030650. [PMID: 33800123 PMCID: PMC8002084 DOI: 10.3390/nano11030650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Chromium (VI) is a ubiquitous groundwater contaminant and it is dangerous to both ecological and human health. Iron nanoparticles (nFe) have a large specific surface area and they are highly efficient in removing chromium (VI) from aqueous solution. However, since the traditional reductive synthesis of nFe is relatively expensive and often causes secondary pollution, it is necessary to develop a low-cost green synthetic method using plant extracts. Synthetic conditions are important for obtaining highly active chromium-removing nanomaterials. In this paper, a green tea extract was used to prepare nFe and the effects of synthetic conditions on subsequent remediation performance were investigated. The optimal conditions included a green tea extract/Fe2+ ratio of 1:2 (91.6%), a green tea extract temperature of 353 K (88.3%) and a synthetic temperature of 298 K (88.1%). Advanced material characterization techniques, including XPS, SEM-EDS, TEM, and Brunauer–Emmett–Teller (BET) confirmed that the average particle size was between 50–80 nm, with a specific surface area of 42.25 m2·g−1. Furthermore nFe had a core-shell structure, where Fe (0) constituted the core and a shell was composed of iron oxide. Finally, a mechanism for synthesizing nFe by green tea extract was proposed, providing a theoretical basis for optimized synthetic conditions for preparing nFe when using green tea extract.
Collapse
|
33
|
Ge L, Yin J, Yan D, Hong W, Jiao T. Construction of Nanocrystalline Cellulose-Based Composite Fiber Films with Excellent Porosity Performances via an Electrospinning Strategy. ACS OMEGA 2021; 6:4958-4967. [PMID: 33644603 PMCID: PMC7905938 DOI: 10.1021/acsomega.0c06002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
Cellulose nanocrystals (CNCs) not only have environmental protection characteristics of being lightweight, degradable, green, and renewable but also have some nanocharacteristics of high strength, large specific surface area, and obvious small size effect, so they are often used as a reinforcing agent in various polymers. However, the hydrogen bonding between CNC molecules is relatively strong, and they can easily aggregate and get entangled with each other. In this work, several large-porosity composite nanofiber films, KH550-CNC/waterborne polyurethane (WPU)/poly(vinyl alcohol) (PVAL) with KH550-modified CNCs, are prepared using poly(vinyl alcohol) (PVAL) solution and electrospinning technology. A variety of characterization methods are used to discuss and analyze the nanofiber materials, and the effects of the added amount of CNCs modified with KH550, spinning voltage, curing distance, and advancing speed on the morphology and performance of composite fibers are discussed separately. The results show that when the content of KH550-CNC is 1%, the composite fiber film obtained has the most regular morphology and the best spinnability, which is convenient for the specific application of fiber materials in a later period. In addition, the porosity of the obtained composite fiber film is 62.61%. Therefore, this work provides a theoretical basis and research strategy for the preparation of higher-porosity composite films as well as the development of new textile materials.
Collapse
Affiliation(s)
- Lei Ge
- Pollution
Prevention Biotechnology Laboratory of Hebei Province, School of Environmental
Science and Engineering, Hebei University
of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Juanjuan Yin
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Dawei Yan
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Wei Hong
- College
of Materials Science and Engineering, Liaoning
Technical University, Fuxin 123000, P. R. China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
34
|
Zhang L, Liu Y, Li X, Guo Y, Jiang Z, Jiao T, Yang J. Synthesis of a New Amino-Furopyridine-Based Compound as a Novel Fluorescent pH Sensor in Aqueous Solution. ACS OMEGA 2021; 6:4800-4806. [PMID: 33644588 PMCID: PMC7905818 DOI: 10.1021/acsomega.0c05734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/29/2021] [Indexed: 05/02/2023]
Abstract
Development of new fluorescent molecules, especially pH-sensitive fluorescent dyes, is always in high demand due to their wide applications in various fields and the limited number of common chromophores. In this work, a family of 3-amino-N-phenylfuro[2,3-b]pyridine-2-carboxamides (AFP) was synthesized as novel fluorescent compounds. Besides fluorescence in an organic solvent, AFP 1 and AFP 2 exhibit good fluorescence properties in both acidic and basic aqueous solution, which could be explained by protonation or different conformations formed in solution. Density functional theory (DFT) calculations on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) of various conformations were performed for further support.
Collapse
Affiliation(s)
- Liyan Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Yang Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Xiang Li
- Qinhuangdao
Customs Technical Center, Qinhuangdao 066004, P. R. China
| | - Yingjie Guo
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Zhicheng Jiang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jingyue Yang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| |
Collapse
|
35
|
Wang R, Li M, Zhou J, Zhang L, Gu J, Wang M, Jiao T. Self-Assembled Black Phosphorus-Based Composite Langmuir-Blodgett Films with an Enhanced Photocurrent Generation Capability and Surface-Enhanced Raman Scattering Properties. ACS OMEGA 2021; 6:4430-4439. [PMID: 33644555 PMCID: PMC7906586 DOI: 10.1021/acsomega.0c05832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 05/14/2023]
Abstract
In this work, Langmuir-Blodgett (LB) composite thin films were successfully prepared using black phosphorus nanosheets (BPNS) and dye molecules. Black phosphorus (BP) was first exfoliated in isopropanol solution to form BPNS, and then, BPNS were modified with 4-azidobenzoic acid (Az-BPNS) to improve their stability. The characterization results showed that the synthesized Az-BPNS-dye LB films have a uniform and ordered structure. In addition, the synthesized Az-BPNS-dye LB films exhibit excellent photoelectrochemical performance, and Az-BPNS-methylene blue (MB) produces higher photocurrent compared to Az-BPNS-Neutral red (NR) films. The current work shows an effective way to prepare functionalized BP-based materials and provide evidence for their application in optoelectronic devices.
Collapse
Affiliation(s)
- Ran Wang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Min Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jingxin Zhou
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jianmin Gu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Mingli Wang
- Key
Laboratory for Microstructural Material Physics of Hebei Province,
School of Science, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
- . Phone: 0086-335-8056854
| |
Collapse
|
36
|
Yin J, Ge B, Jiao T, Qin Z, Yu M, Zhang L, Zhang Q, Peng Q. Self-Assembled Sandwich-like MXene-Derived Composites as Highly Efficient and Sustainable Catalysts for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1267-1278. [PMID: 33439659 DOI: 10.1021/acs.langmuir.0c03297] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photocatalysts play an increasingly important role in environmental remediation polluted by industrial wastewater. However, the preparation of adsorbents and catalysts with high activity by simple and easy methods is still a great challenge. Here, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 was prepared by an easily available solvent reduction measure for the highly efficient catalytic nitro compounds. In particular, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 exhibits excellent catalysis for 2-nitroaniline (2-NA) and 4-nitrophenol (4-NP), and its pseudo-first-order reaction rate constants (k) are 0.163 and 0.114 min-1, respectively. Interestingly, even after eight consecutive cycles of catalytic experiments, the conversion rates of catalytic 2-NA and 4-NP are still greater than 95 and 92%, respectively, demonstrating that the obtained catalyst has excellent catalytic capability and a high reutilization rate. The excellent catalytic performances of Cu2O/TiO2/Ti3C2 can be attributed to the fact that Ti3C2 provides a greater reaction site for the formation of Cu2O and reduces the aggregation during the formation of Cu2O by in situ synthesis. Therefore, ternary composite catalyst Cu2O/TiO2/Ti3C2 prepared by solvent reduction not only supplies a technical method for the catalytic reaction of MXene-based material but also lays the foundation for the development of new photocatalysts.
Collapse
|