1
|
Faisal AAH, Mokif LA, Hassan WH, AlZubaidi R, Al Marri S, Hashim K, Khan MA, Al-Sareji OJ. Continuous and funnel-gate configurations of a permeable reactive barrier for reclamation of groundwater laden with tetracycline: experimental and simulation approaches. Sci Rep 2024; 14:22907. [PMID: 39358388 PMCID: PMC11447163 DOI: 10.1038/s41598-024-73295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The current study investigates removing tetracycline from water using batch, column, and tank experiments with statistical modelling using ANN for continuous tests. An artificial neural network (ANN) using the Levenberg-Marquardt back-propagation (LMA) training algorithm is constructed to compare the effectiveness of Tetracycline removal from aqueous solution using the sorption technique with prepared adsorbent. Several characterization analyses XRD, FT-IR, and SEM are employed for prepared Brownmillerite (Ca2Fe2O5)-Na alginate beads. The operating conditions of batch tests involved, contact time (0.1-3 h), initial of tetracycline (Co) of (100-250 mg/L), pH (3-12), agitation speed (50-250) rpm and dosage of adsorbent (0.2-1.2 g/50 mL). The outcomes of experiments have demonstrated that the optimum conditions for the batch test to achieve the maximum adsorbent capacity (qmax =7.845 mg/g) are achieved at pH 7, contact time 1.5 h, adsorbent dose 1.2 g/50 mL, agitation speed of 200 rpm, and initial concentration of TC 100 mg/L. Minimum mean square error (MSE) values of 7.09E-04 for 30 hidden neurons and 0.0029 for 59 hidden neurons in the 1D and 2D systems are accomplished, respectively. The artificial neural network model has exhibited excellent performance with correlation coefficients exceeding 0.980 for the operating variables, demonstrating its accuracy and effectiveness in predicting the experimental outcomes. According to sensitivity analysis, the influential parameter in the column test (1D) is the flow rate (mL/min), with a relative importance of 32.769%. However, in the tank test (2D), time (day) is signified as an influential parameter with a relative importance of 31.207%.
Collapse
Affiliation(s)
- Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, 10001, Iraq.
| | | | - Waqed H Hassan
- College of Engineering, University of Warith Al-Anbiyaa, Kerbala, Iraq
- Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala, 56001, Iraq
| | - Radhi AlZubaidi
- Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Saeed Al Marri
- Qatar Environment & Energy Research Institute, Al Rayyan, Qatar
| | - Khalid Hashim
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq.
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK.
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering, Knowledge Park 11, Greater Noida, 201310, India
| | - Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, Veszprém, 8200, Hungary.
| |
Collapse
|
2
|
Giglio V, Zagni C, Spina ETA, Cunsolo F, Carroccio SC. Polyvinylimidazole-Based Cryogel as an Efficient Tool for the Capture and Release of Oleuropein in Aqueous Media. Polymers (Basel) 2024; 16:2339. [PMID: 39204559 PMCID: PMC11359441 DOI: 10.3390/polym16162339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
A polyvinylimidazole-based cryogel is presented as a pioneering solution for efficient extraction and release of partially water-soluble polyphenols from olive byproducts. Specifically, oleuropein was used as model molecule to evaluate its recovery from water. The material merges the properties of interconnected cryogel structure in adsorbing molecules via fast diffusion flux, with the strong electrostatic interactions acted by imidazole moiety. Such cryogel achieves effective oleuropein binding likely through hydrogen bonding and π-π interactions. Comprehensive assessments of static adsorption kinetics, isotherms, and desorption kinetics underscore the cryogel's efficacy in oleuropein extraction and release, highlighting its pivotal role in valorizing olive wastewater through sustainable biotechnological applications.
Collapse
Affiliation(s)
- Valentina Giglio
- CNR—Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy;
| | - Emanuela Teresa Agata Spina
- CNR—Institute for Polymers, Composites and Biomaterials, Via Paolo Gaifami 18, 95126 Catania, Italy; (E.T.A.S.); (S.C.C.)
| | - Francesca Cunsolo
- CNR—Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Sabrina Carola Carroccio
- CNR—Institute for Polymers, Composites and Biomaterials, Via Paolo Gaifami 18, 95126 Catania, Italy; (E.T.A.S.); (S.C.C.)
| |
Collapse
|
3
|
Lee S, Ha J, Li OL. Plasma Modification of Biomass-Based Starfish Catalysts for Efficient Biodiesel Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1313. [PMID: 39120418 PMCID: PMC11313850 DOI: 10.3390/nano14151313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
This study investigated biodiesel production via the transesterification of grapeseed oil with plasma-modified biomass-based catalysts originating from starfish. Dried starfish was first converted into magnesium and calcium oxide through heat treatment and then further modified by plasma engineering to improve the catalyst's surface area and active sites via zinc addition. The Zn content was added via plasma engineering in the ratios of starfish (Mg0.1Ca0.9CO3): ZnO varying from 5:1, 10:1, to 20:1. The structure and morphology of the catalyst were confirmed through XRD, SEM, and XPS analysis. After the Zn addition and activation process, the surface area and the basicity of the synthesized catalysts were increased. The plasma-modified catalyst showed the highest basicity at the ratio of 10:1. Based on HPLC analyses, the optimized biodiesel yield in transesterification demonstrated 97.7% in fatty acid conversion, and its catalytic performance maintained 93.2% even after three repeated runs.
Collapse
Affiliation(s)
| | | | - Oi Lun Li
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea; (S.L.); (J.H.)
| |
Collapse
|
4
|
Shu C, Zhang W, Zhang Y, Li Y, Xu X, Zhou Y, Zhang Y, Zhong Q, He C, Zhu Y, Wang X. Copper-Bearing Metal-Organic Framework with Mucus-Penetrating Function for the Multi-Effective Clearance of Mucosal Colonized Helicobacter pylori. RESEARCH (WASHINGTON, D.C.) 2024; 7:0358. [PMID: 38779487 PMCID: PMC11109517 DOI: 10.34133/research.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
Helicobacter pylori colonizes over 50% of people worldwide. Biofilm formation through penetrating gastric mucus and resistance acquired by H. pylori markedly reduces the efficacy of traditional antibiotics. The present triple therapy and bismuth-based quadruple therapy inevitably causes intestinal flora disturbance and fails to address the excessive H. pylori-triggered inflammatory response. Herein, a mucus-permeable therapeutic platform (Cu-MOF@NF) that consists of copper-bearing metal-organic framework (Cu-MOF) loaded with nitrogen-doped carbon dots and naturally active polysaccharide fucoidan is developed. The experimental results demonstrate that Cu-MOF@NF can penetrate the mucus layer and hinder H. pylori from adhering on gastric epithelial cells of the stomach. Notably, released Cu2+ can degrade the polysaccharides in the biofilm and interfere with the cyclic growing mode of "bacterioplankton ↔ biofilm", thereby preventing recurrent and persistent infection. Compared with traditional triple therapy, the Cu-MOF@NF not only possesses impressive antibacterial effect (even include multidrug-resistant strains), but also improves the inflammatory microenvironment without disrupting the balance of intestinal flora, providing a more efficient, safe, and antibiotic-free new approach to eradicating H. pylori.
Collapse
Affiliation(s)
- Chunxi Shu
- Department of Gastroenterology, The First Affiliated Hospital,
Jiangxi Medical College Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Gastroenterology, The First Affiliated Hospital,
Jiangxi Medical College Nanchang University, Nanchang 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
| | - Yiwei Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Yu Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Xinbo Xu
- Department of Gastroenterology, The First Affiliated Hospital,
Jiangxi Medical College Nanchang University, Nanchang 330006, China
| | - Yanan Zhou
- Department of Gastroenterology, The First Affiliated Hospital,
Jiangxi Medical College Nanchang University, Nanchang 330006, China
| | - Yue Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Qin Zhong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital,
Jiangxi Medical College Nanchang University, Nanchang 330006, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital,
Jiangxi Medical College Nanchang University, Nanchang 330006, China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| |
Collapse
|
5
|
Wu F, Liu J, Yang Z, Li F, Xiang Y, Pan Y, Xue Z. Highly Stable Silicon Anode Enabled by a Water-Soluble Tannic Acid Functionalized Dual-Network Binder. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669607 DOI: 10.1021/acsami.4c03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Silicon (Si), a high-capacity electrode material, is crucial for achieving high-energy-density lithium-ion batteries. However, Si suffers from poor cycling stability due to its significant volume changes during operation. In this work, a tannic acid functionalized aqueous dual-network binder with an intramolecular tannic acid functionalized network has been synthesized, which is composed of covalent-cross-linked polyamide and ionic-cross-linked alginate (Alg(Ni)-PAM-TA), and employed as an advanced binder for stabilizing Si anodes. The resultant Alg(Ni)-PAM-TA binder, incorporating diverse functional groups including amide, carboxylic acid, and dynamic hydrogen bonds, can easily interact with both Si nanoparticles and the Cu foil, thereby facilitating the formation of a highly resilient network characterized by exceptional adhesion strength. Moreover, molecular dynamics (MD) simulations indicate that the Alg(Ni)-PAM-TA network shows an increased intramolecular hydrogen bond number with increasing concentration of TA and a decreased intramolecular hydrogen bond between PAM and Alg as a result of the aggregation behavior of tannic acids themselves. Consequently, the binder significantly enhances the Si electrode's integrity throughout repeated charge/discharge cycles. At a current density of 0.84 A g-1, the Si electrode retains a capacity of 1863.4 mAh g-1 after 200 cycles. This aqueous binder functionalized with the intramolecular network via the incorporation of TA molecules holds great promise for the development of high-energy-density lithium-ion batteries.
Collapse
Affiliation(s)
- Fang Wu
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Jiarun Liu
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Ziyu Yang
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Fei Li
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
- Tianfu Jiangxi Laboratory, Chengdu 610041, China
| | - Yilan Pan
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Zhiyu Xue
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| |
Collapse
|
6
|
Eleryan A, Aigbe UO, Ukhurebor KE, Onyancha RB, Eldeeb TM, El-Nemr MA, Hassaan MA, Ragab S, Osibote OA, Kusuma HS, Darmokoesoemo H, El Nemr A. Copper(II) ion removal by chemically and physically modified sawdust biochar. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:9283-9320. [DOI: 10.1007/s13399-022-02918-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2025]
Abstract
Abstract
The difference between physical activations (by sonications) and chemical activations (by ammonia) on sawdust biochar has been investigated in this study by comparing the removal of Cu(II) ions from an aqueous medium by adsorption on sawdust biochar (SD), sonicated sawdust biochar (SSD), and ammonia-modified sawdust biochar (SDA) with stirring at room temperature, pH value of 5.5–6.0, and 200 rpm. The biochar was prepared by the dehydrations of wood sawdust by reflux with sulfuric acid, and the biochar formed has been activated physically by sonications and chemically by ammonia solutions and then characterized by the Fourier transform infrared (FTIR); Brunauer, Emmett, and Teller (BET); scanning electron microscope (SEM); thermal gravimetric analysis (TGA); and energy-dispersive spectroscopy (EDX) analyses. The removal of Cu(II) ions involves 100 mL of sample volume and initial Cu(II) ion concentrations (conc) 50, 75, 100, 125, 150, 175, and 200 mg L−1 and the biochar doses of 100, 150, 200, 250, and 300 mg. The maximum removal percentage of Cu(II) ions was 95.56, 96.67, and 98.33% for SD, SSD, and SDA biochars, respectively, for 50 mg L−1 Cu(II) ion initial conc and 1.0 g L−1 adsorbent dose. The correlation coefficient (R2) was used to confirm the data obtained from the isotherm models. The Langmuir isotherm model was best fitted to the experimental data of SD, SSD, and SDA. The maximum adsorption capacities (Qm) of SD, SSD, and SDA are 91.74, 112.36, and 133.33 mg g−1, respectively. The degree of fitting using the non-linear isotherm models was in the sequence of Langmuir (LNR) (ideal fit) > Freundlich (FRH) > Temkin (SD and SSD) and FRH (ideal fit) > LNR > Temkin (SDA). LNR and FRH ideally described the biosorption of Cu(II) ions to SD and SSD and SDA owing to the low values of χ2 and R2 obtained using the non-linear isotherm models. The adsorption rate was well-ordered by the pseudo-second-order (PSO) rate models. Finally, chemically modified biochar with ammonia solutions (SDA) enhances the Cu(II) ions’ adsorption efficiency more than physical activations by sonications (SSD). Response surface methodology (RSM) optimization analysis was studied for the removal of Cu(II) ions using SD, SSD, and SDA biochars.
Collapse
|
7
|
Luo H, Liu B, Zhang M, Wei C, Long Q, Pan S, Zeng J, Rong H. Efficient adsorption of phosphorus by macroscopic MOF/chitosan composites and preliminary investigation of subsequent phosphorus recovery through electrochemically-driven struvite precipitation. Int J Biol Macromol 2024; 257:128707. [PMID: 38101663 DOI: 10.1016/j.ijbiomac.2023.128707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The proper management of phosphorus (P) from wastewater is crucial for sustainable development consideration. Herein, we developed a strategy which combines adsorption via tailored adsorbents and electrochemically-driven struvite precipitation (ESP) for P recovery. Novel polydopamine-modified Ce-MOF/chitosan composite beads (PDA@Ce-MOF-CS) were prepared by a facile in situ growth of Ce-MOF crystals incorporated natural polymers and PDA coating. The physicochemical properties of PDA@Ce-MOF-CS were characterized. Both batch and fixed-bed column experiments were conducted to evaluate its adsorption performances. Representatively, PDA@Ce-MOF-CS performed good selectivity for P removal and exhibited a maximum adsorption capacity of 161.13 mg P/g at pH 3 and 318 K. Meanwhile, the developed adsorbent showed great reusability after ten regeneration cycles as well as good adsorption stability. The dominant mechanism for efficient P adsorption included electrostatic attraction, surface precipitation and ligand exchange. Interestingly, PDA@Ce-MOF-CS exhibited a remarkable adsorption capacity of 92.86 mg P/g by treating real P-rich electroplating wastewater, and the desorbed P in the eluate could be effectively recovered and converted into a solid fertilizer as struvite via ESP. Overall, this work provided a new research direction for P recovery from wastewater as struvite by combined technologies with the help of macroscopic MOF architectures.
Collapse
Affiliation(s)
- Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Binhua Liu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mingxuan Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Shida Pan
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juexi Zeng
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Nasiri A, Golestani N, Rajabi S, Hashemi M. Facile and green synthesis of recyclable, environmentally friendly, chemically stable, and cost-effective magnetic nanohybrid adsorbent for tetracycline adsorption. Heliyon 2024; 10:e24179. [PMID: 38293470 PMCID: PMC10825349 DOI: 10.1016/j.heliyon.2024.e24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Antibiotic contamination of water sources, particularly tetracycline (TC) contamination, has emerged as one of the global issues that needs action. In this research, ZnCoFe2O4@Chitosan (Ch) as a magnetic nanohybrid adsorbent was synthesized using the microwave-assisted co-precipitation method, and their efficiency for the TC adsorption process was investigated. FESEM (Field Emission Scanning Electron Microscope), EDX (Energy Dispersive X-ray), Mapping and line Scan, XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Spectrometer), VSM (Vibrating Sample Magnetometer), Thermogravimetric analysis (TGA) and BET (Brunauer Emmett Teller) techniques were used to check and verify its physical and chemical properties. The removal of TC via the adsorption process from synthetic and real wastewater samples was investigated. The factors determining the TC adsorption process, comprising tetracycline concentration (5-30 mg/L), adsorbent dosage (0.7-2 g/L), contact time (2-45 min), and pH (3-11), were evaluated. The removal effectiveness for the synthetic sample and the real wastewater sample was 93 % and 80 %, respectively, under the ideal TC adsorption process parameters of pH 3, adsorbent dosage 1 g/L, TC initial concentration 5 mg/L, and contact time 30 min. According to kinetic and equilibrium studies, the adsorption of TC by ZnCoFe2O4@Ch follows pseudo-second-order kinetics and the Freundlich isotherm. Additionally, it was determined through the analysis of thermodynamic data that the process of exothermic adsorption is spontaneous and is followed by a decrease in disorder (ΔH = -15.16 kJ/mol, ΔS = -28.69 kJ/mol, and ΔG = -6.62 kJ/mol). After five cycles of recovery and regeneration, the ZnCoFe2O4@Ch magnetic nanocomposite was able to remove 65 % of the TC pollutant and had good chemical stability. The results showed that the magnetic nano-adsorbent ZnCoFe2O4@Ch is a novel magnetic nano-adsorbent with high adsorption capacity that can be utilized to eliminate pharmaceutical contaminants from aqueous solutions.
Collapse
Affiliation(s)
- Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Golestani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Li D, Li Y, He S, Hu T, Li H, Wang J, Zhang Z, Zhang Y. Resourcization of Argillaceous Limestone with Mn 3O 4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. TOXICS 2024; 12:72. [PMID: 38251027 PMCID: PMC10820775 DOI: 10.3390/toxics12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth's crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4) was used to modify AL by an in-situ deposition strategy through manganese chloride and alkali stepwise treatment to improve the surface area of AL and enable its utilization as an efficient adsorbent for heavy metals removal. The surface area and cation exchange capacity (CEC) were enhanced from 3.49 to 24.5 m2/g and 5.87 to 31.5 cmoL(+)/kg with modification, respectively. The maximum adsorption capacities of lead (Pb2+), copper (Cu2+), and nickel (Ni2+) ions on Mn3O4-modified argillaceous limestone (Mn3O4-AL) in mono-metal systems were 148.73, 41.30, and 60.87 mg/g, respectively. In addition, the adsorption selectivity in multi-metal systems was Pb2+ > Cu2+ > Ni2+ in order. The adsorption process conforms to the pseudo-second-order model. In the multi-metal system, the adsorption reaches equilibrium at about 360 min. The adsorption mechanisms may involve ion exchange, precipitation, electrostatic interaction, and complexation by hydroxyl groups. These results demonstrate that Mn3O4 modification realized argillaceous limestone resourcization as an ideal adsorbent. Mn3O4-modified argillaceous limestone was promising for heavy metal-polluted water and soil treatment.
Collapse
Affiliation(s)
- Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Shuran He
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Tian Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Hanhao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| |
Collapse
|
10
|
Laddha H, Sharma P, Jadhav NB, Abedeen MZ, Gupta R. Batch Experimental Studies and Statistical Modeling for the Effective Removal of Tetracycline from Wastewater Using Bimetallic Zn-Cu-Metal-Organic Framework@Hydrogel Composite Beads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38036945 DOI: 10.1021/acs.langmuir.3c02385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Antimicrobial resistance (AMR) is on an upsurge as more and more broad-spectrum antibiotics are being used haphazardly, resulting in imbalances in the ecosystem and disrupting common/systematic clinical protocols. To combat this issue, metal-organic framework embedded zinc-copper-benzenedicarboxylate@calcium alginate composite beads (Zn-Cu-BDC@CA CBs) were synthesized and utilized for the adsorption of tetracycline (TC) from water. The surface morphology, presence of functional groups, surface area, and thermal stability of Zn-Cu-BDC@CA CBs were evaluated by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and thermal gravimetric analysis (TGA), respectively. Batch adsorption experiments were also carried out to optimize the adsorption performance of Zn-Cu-BDC@CA CBs for TC by adjusting the key parameters, including pH of the solution, contact time, adsorbent dosage, temperature, and initial concentration of TC. From the RSM model, 96.8% removal of TC takes place under the optimum conditions (pH = 7.3, mass = 17.2 mg, concentration = 21.3 ppm, time = 3.4 h, and temperature = 31.8 °C), which aligns closely with the experimental batch study, where the addition of 20 mg of adsorbent to a 20 mL TC solution (20 mg/L) at a pH of 7 and a temperature of 27 °C yielded an impressive TC removal efficiency of 96.55% within 180 min. Zn-Cu-BDC@CA CBs possess homogeneous adsorption surfaces, and TC is adsorbed via monolayer chemisorption, according to the results derived from the Langmuir isotherm model and pseudo-second-order kinetic model. The thermodynamic analysis indicated that the adsorption process is both endothermic and spontaneous. In their entirety, the synthesized Zn-Cu-BDC@CA CBs exhibit certain operational advantages, such as simple separation, satisfactory adsorption performance, and decent recyclability, indicating their viability for industrial application of elimination of TC residues from aquatic environments.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Neha Balaji Jadhav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Md Zainul Abedeen
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
11
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. Functionally-designed floatable amino-modified ZnLa layered double hydroxides/cellulose acetate beads for tetracycline removal: Performance and mechanism. Carbohydr Polym 2023; 311:120752. [PMID: 37028855 DOI: 10.1016/j.carbpol.2023.120752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Dang-Bao T, Nguyen TMC, Hoang GH, Lam HH, Phan HP, Tran TKA. Thiol-Surface-Engineered Cellulose Nanocrystals in Favor of Copper Ion Uptake. Polymers (Basel) 2023; 15:polym15112562. [PMID: 37299360 DOI: 10.3390/polym15112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cellulose, the most abundant natural polymer on earth, has recently gained attention for a large spectrum of applications. At a nanoscale, nanocelluloses (mainly involving cellulose nanocrystals or cellulose nanofibrils) possess many predominant features, such as highly thermal and mechanical stability, renewability, biodegradability and non-toxicity. More importantly, the surface modification of such nanocelluloses can be efficiently obtained based on the native surface hydroxyl groups, acting as metal ions chelators. Taking into account this fact, in the present work, the sequential process involving chemical hydrolysis of cellulose and autocatalytic esterification using thioglycolic acid was performed to obtain thiol-functionalized cellulose nanocrystals. The change in chemical compositions was attributed to thiol-functionalized groups and explored via the degree of substitution using a back titration method, X-ray powder diffraction, Fourier-transform infrared spectroscopy and thermogravimetric analysis. Cellulose nanocrystals were spherical in shape and ca. 50 nm in diameter as observed via transmission electron microscopy. The adsorption behavior of such a nanomaterial toward divalent copper ions from an aqueous solution was also assessed via isotherm and kinetic studies, elucidating a chemisorption mechanism (ion exchange, metal chelation and electrostatic force) and processing its operational parameters. In contrast to an inactive configure of unmodified cellulose, the maximum adsorption capacity of thiol-functionalized cellulose nanocrystals toward divalent copper ions from an aqueous solution was 4.244 mg g-1 at a pH of 5 and at room temperature.
Collapse
Affiliation(s)
- Trung Dang-Bao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi-My-Chau Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Gia-Han Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoa-Hung Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hong-Phuong Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi-Kieu-Anh Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Gwon K, Lee S, Kim Y, Choi J, Kim S, Kim SJ, Hong HJ, Hwang Y, Mori M, Lee DN. Construction of a bioactive copper-based metal organic framework-embedded dual-crosslinked alginate hydrogel for antimicrobial applications. Int J Biol Macromol 2023; 242:124840. [PMID: 37169053 DOI: 10.1016/j.ijbiomac.2023.124840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Metal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu2+ over an extended time period is crucial to prevent toxicity. In this study, we developed an alginate-based antimicrobial scaffold and encapsulated MOFs within a dual-crosslinked alginate polymer network. We synthesized Cu-MOFs containing glutarate (Glu) and 4,4'-azopyridine (AZPY) (Cu(AZPY)-MOF) and encapsulated them in an alginate-based hydrogel through a combination of visible light-induced photo and calcium ion-induced chemical crosslinking processes. We confirmed Cu(AZPY)-MOF synthesis using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. This antimicrobial hydrogel demonstrated excellent antibacterial and antifungal properties against two bacterial strains (MRSA and S. mutans, with >99.9 % antibacterial rate) and one fungal strain (C. albicans, with >78.7 % antifungal rate) as well as negligible cytotoxicity towards mouse embryonic fibroblasts, making it a promising candidate for various tissue engineering applications in biomedical fields.
Collapse
Affiliation(s)
- Kihak Gwon
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Seonhwa Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Youngmee Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jun Choi
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sujin Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Jin Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Youngmin Hwang
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
14
|
Subaihi A, Shahat A. Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Integrated Adsorption-Photocatalytic Decontamination of Oxytetracycline from Wastewater Using S-Doped TiO2/WS2/Calcium Alginate Beads. Catalysts 2022. [DOI: 10.3390/catal12121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Integrated wastewater treatment processes are needed due to the inefficient removal of emerging pharmaceuticals by single methods. Herein, an adsorbent-photocatalyst integrated material was fabricated by coupling calcium alginate with sulfur-doped TiO2/tungsten disulfide (S-TiO2/WS2/alginate beads) for the removal of oxytetracycline (OTC) from aqueous solution by an integrated adsorption-photocatalysis process. The semiconductor S-TiO2/WS2 hybrid photocatalyst was synthesized with a hydrothermal method, while the integrated adsorbent-photocatalyst S-TiO2/WS2/alginate beads were synthesized by blending S-TiO2/WS2 with sodium alginate using calcium chloride as a precipitating agent. The physicochemical characteristics of S-TiO2/WS2/alginate beads were analyzed using X-ray diffraction , scanning electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The integrated adsorption-photocatalysis process showed enhanced removal from 92.5 to 72%, with a rise in the OTC concentration from 10 to 75 mg/L respectively. The results demonstrated that the adsorption of OTC onto S-TiO2/WS2/alginate beads followed the Elovich kinetic model and Redlich–Peterson isotherm models. The formations of H-bonds, cation bridge bonding, and n-π electron donor-acceptor forces were involved in the adsorption of OCT onto S-TiO2/WS2/alginate beads. In the integrated adsorption-photocatalysis, surface-adsorbed OTC molecules were readily decomposed by the photogenerated active radical species (h⁺, O2•−, and HO•). The persulfate addition to the OTC solution further increased the photocatalysis efficacy due to the formation of additional oxidizing species (SO4•⁻, SO4⁻). Moreover, S-TiO2/WS2/alginate beads showed favorable efficiency and sustainability in OTC removal, approaching 78.6% after five cycles. This integrated adsorption-photocatalysis process offered significant insight into improving efficiency and reusability in water treatment.
Collapse
|
16
|
Bhangi BK, Ray S. Adsorption and photocatalytic degradation of tetracycline from water by kappa‐carrageenan and iron oxide nanoparticle‐filled poly (
acrylonitrile‐co‐N
‐vinyl pyrrolidone) composite gel. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bidyut Kumar Bhangi
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| | - SamitKumar Ray
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| |
Collapse
|
17
|
Kim DG, Boldbaatar S, Ko SO. Enhanced Adsorption of Tetracycline by Thermal Modification of Coconut Shell-Based Activated Carbon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13741. [PMID: 36360624 PMCID: PMC9655672 DOI: 10.3390/ijerph192113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Tetracycline (TC) is one of the most frequently detected antibiotics in various water matrices, posing adverse effects on aquatic ecosystems. In this study, coconut shell-based powdered activated carbon (PAC) was thermally modified under various temperatures to enhance TC adsorption. The PAC subjected to 800 °C (PAC800) showed the best TC adsorption. PAC and PAC800 were characterized using N2 adsorption/desorption isotherm, X-ray photoelectron spectroscopy, Raman spectroscopy, XRD, Boehm titration, and zeta potential analyses. Increases in the specific surface area, C/O ratio, C=O, surface charge, basic groups, and the number of stacked graphene layers along with a decrease in structural defects were observed for PAC800 compared to PAC. The TC adsorption was significantly improved for PAC800 compared to that of PAC, which is attributable to the enhanced electrostatic attraction and π-π EDA interactions induced by the changes in the properties. The Freundlich isotherm was the best fit indicating the heterogeneous nature, and the Freundlich constant of PAC and PAC800 increased from 85.8 to 119.5 and 132.1 to 178.6 (mg/g)‧(L/mg)1/n, respectively, when the temperature was increased from 296.15 to 318.15 K. The kinetics were well described by the pseudo-second-order adsorption model and the rate constant of PAC and PAC800 increased from 0.80 to 1.59 and from 0.72 to 1.29 × 10-3 g/mg‧min, respectively, as the temperature was increased. The activation energy of PAC and PAC800 was 23.7 and 19.6 J/mol, respectively, while the adsorption enthalpy was 196.7 and 98.5 kJ/mol, respectively, indicating endothermic nature. However, it was suggested that TC adsorption onto PAC800 was more favorable and was more contributed to by physisorption than that onto PAC. These results strongly suggest that the properties, adsorption capacity, and adsorption mechanisms of carbonaceous adsorbents can be significantly changed by simple thermal treatment. More, the results provide valuable information about the design of carbonaceous adsorbents with better performance where the structures and functional groups, which positively affect the adsorption, must be improved.
Collapse
Affiliation(s)
- Do-Gun Kim
- Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea
| | - Shinnee Boldbaatar
- Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea
| | - Seok-Oh Ko
- Department of Civil Engineering, Kyung Hee University, 1732, Deakyungdaero, Yongin 17104, Korea
| |
Collapse
|
18
|
Kumar R, Oves M, Ansari MO, Taleb MA, Baraka MAEF, Alghamdi MA, Makishah NHA. Biopolymeric Ni 3S 4/Ag 2S/TiO 2/Calcium Alginate Aerogel for the Decontamination of Pharmaceutical Drug and Microbial Pollutants from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3642. [PMID: 36296832 PMCID: PMC9609712 DOI: 10.3390/nano12203642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of pharmaceutical drugs and microbes in the water is leading to the development of drug resistant microbes. Therefore, efficient materials that can remove or inactivate the drug and microbe contaminants are required. In this work, nickel sulfide/calcium alginate (Ni3S4/CA), silver sulfide/calcium alginate (Ag2S/CA), modified titanium dioxide/calcium alginate (TiO2/CA), and Ni3S4/Ag2S/TiO2/calcium alginate (Ni3S4/Ag2S/TiO2/CA) aerogels have been synthesized for the removal of the oxytetracycline (OTC) drug and microbial contaminants from real beverage industry wastewater. The results revealed that Ni3S4/Ag2S/TiO2/CA aerogel is highly efficient for OTC adsorption and inactivation of microbes compared to Ni3S4/CA, Ag2S/CA and TiO2/CA aerogels. The OTC adsorption depends greatly on the solution pH, and optimum OTC removal was observed at pH 6 in its zwitterionic (OTC±) form. The formation of H-bonding and n-π electron donor-acceptors is possible to a considerable extent due to the presence of the double bond benzene ring, oxygen and nitrogen, sulfur-containing functional groups on the OTC molecules, and the Ni3S4/Ag2S/TiO2/CA aerogel. Based on the statistical analysis, root-mean-square deviation (RMSD), chi square (χ2) values, and higher correlation coefficient (R2) values, the Redlich−Peterson isotherm model and Elovich kinetic model are most suited to modelling the OTC adsorption onto Ni3S4/Ag2S/TiO2/CA. The prepared aerogels’ excellent antimicrobial activity is observed in the dark and with solar light irradiation. The zone of inhibition analysis revealed that the antimicrobial activity of the aerogels is in the following order: Ni3S4/Ag2S/TiO2/CA > TiO2/CA > Ag2S/CA > Ni3S4/CA, respectively. Moreover, the antimicrobial results demonstrated that reactive oxygen species, electrons, and active radical species are responsible for growth inhibition and killing of the microbes. These results indicated that Ni3S4/Ag2S/TiO2/CA aerogel is highly efficient in decontaminating pollutants from wastewater.
Collapse
Affiliation(s)
- Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Oves
- Central of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Md. Abu Taleb
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Abou El-Fetouh Baraka
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Naief Hamoud Al Makishah
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Mamat K, Muslim A, Lan H, Malik D, Musajan A. Significantly improving the Cu
2+
removal performance of conducting
polymer‐based
adsorbent from aqueous solution through
cross‐linking
modification. J Appl Polym Sci 2022. [DOI: 10.1002/app.53176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kamila Mamat
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Xinjiang China
| | - Arzugul Muslim
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Xinjiang China
| | - Haidie Lan
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Xinjiang China
| | - Dilnur Malik
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
| | - Aynur Musajan
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
| |
Collapse
|
20
|
Feng Y, Chen G, Zhang Y, Li D, Ling C, Wang Q, Liu G. Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C 3N 4 modified graphene oxide hydrogels. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127362. [PMID: 34638075 DOI: 10.1016/j.jhazmat.2021.127362] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 05/27/2023]
Abstract
Development of economic and efficient absorbent for the simultaneous removal of antibiotics and heavy metals is needed. In this study, a three-dimensional porous ultrathin g-C3N4 (UCN) /graphene oxide (GO) hydrogel (UCN-GH) was prepared by co-assembling of UCN and GO nanosheets via the facile hydrothermal reaction. Characterizations indicated that the addition of UCN significantly decreased the reduction of CO and O-CO related groups of GO during the hydrothermal reaction and introduced amine groups on UCN-GH. The UCN-GH exhibited excellent ability on the co-removal of Cu(II) (qmax = 2.0-2.5 mmol g-1) and tetracycline (TC) (qmax = 1.2-3.0 mmol g-1) from water. The adsorption capacities were increased as UCN mass ratio increasing. The mutual effects between Cu(II) and TC were examined through adsorption kinetics and isotherm models. Characterizations and computational chemistry analysis indicated that Cu(II) is apt to coordinate with the amine groups on UCN than with oxygen groups on GO, which accounts for the enhanced adsorption ability of UCN-GH. In the binary system, Cu(II) acts as a bridge between TC and UCN-GH enhanced the removal of TC. The effects of pH and regular salt ions on the removal of Cu(II)/TC were examined. Moreover, the prepared UCN-GH also showed comparable co-adsorption capacities in practical water/wastewater.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guang Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yijian Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Daguang Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chen Ling
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Qiaoying Wang
- Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Karimi S, Namazi H. Magnetic alginate/glycodendrimer beads for efficient removal of tetracycline and amoxicillin from aqueous solutions. Int J Biol Macromol 2022; 205:128-140. [PMID: 35181320 DOI: 10.1016/j.ijbiomac.2022.02.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
Abstract
The release of antibiotic drugs into aquatic environments is a serious environmental and health problem in recent years. Therefore, the development of potential adsorbents for the effective removal of tetracycline (TC) and amoxicillin (AMX) of aqueous media is of great importance. In this study, new alginate beads were successfully prepared by encapsulation of Fe3O4@maltose-functionalized triazine dendrimer in alginate (Alg/Fe3O4@C@TD) for the first time. The obtained beads were utilized as a well adsorbent for the removal of TC and AMX antibiotics from aqueous solutions by batch adsorption procedure. The characteristics of the synthesized beads were investigated using FT-IR, Zeta potential, SEM, XRD, EDX, VSM, and BET. The effects of various operation factors such as adsorbent dose, pH of the solution, contact time, antibiotic initial concentration, temperature, and ionic strength on the removal of antibiotics were studied. Moreover, Langmuir and Freundlich adsorption isotherm results showed that the Langmuir model fitted well for the adsorption of both antibiotics onto Alg/Fe3O4@C@TD beads. Based on the Langmuir model, the maximum adsorption capacity of TC and AMX onto Alg/Fe3O4@C@TD beads at 25 °C was 454.54 and 400 mg/g, respectively. Kinetic and thermodynamic studies also indicated that the TC and AMX adsorption were found to be well fitted with a pseudo-second-order kinetic model, feasible, endothermic, and spontaneous in nature. In addition, the Alg/Fe3O4@C@TD beads showed excellent reusability for removal from both antibiotics after six adsorption cycles. Overall, the obtained results suggest that Alg/Fe3O4@C@TD beads could be considered as a low-cost and eco-friendly adsorbent for antibiotic contaminants removal from aquatic media.
Collapse
Affiliation(s)
- Soheyla Karimi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
22
|
‘‘Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Zn-based MOFs: design, characterization for removal of toxic dyes, copper and their biological activities”. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Silver Nanoparticles Functionalized with Sodium Mercaptoethane Sulfonate to Remove Copper from Water by the Formation of a Micellar Phase. SEPARATIONS 2021. [DOI: 10.3390/separations8080108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work presents a novel procedure for the removal of Cu2+ from water, an essential element in human nutrition considered toxic in high concentrations, based on a microextraction technique involving the formation of a micellar phase. To achieve the total elimination of copper from aqueous samples, a Cu2+-complexing reagent based on silver nanoparticles functionalized with sodium mercaptoethane sulfonate (AgNPs@MESNa) was used. The complex formed by Cu2+ and the reagent was extracted into a micellar microphase formed by Triton X-114, a harmless surfactant. Volumes of 200 µL of the 10−4 mol L−1 suspension of AgNPs@MESNa and 100 µL of a solution of Triton X-114 at 30% m/m were employed to successfully remove 10 mg L−1 of Cu from 20 mL of water samples. The time and temperature needed to achieve 100% microextraction efficiency were 10 min and 40 °C, respectively. The procedure is considered environmentally friendly due to the low volume of the extracting phase and the simple experimental conditions that achieve total removal of Cu2+ from water samples.
Collapse
|