1
|
Shinde AD, Nandurkar YM, Bhalekar S, Walunj YS, Ugale S, Ahmad I, Patel H, Chavan AP, Mhaske PC. Investigation of new 1,2,3-triazolyl-quinolinyl-propan-2-ol derivatives as potential antimicrobial agents: in vitro and in silico approach. J Biomol Struct Dyn 2024; 42:1191-1207. [PMID: 37254438 DOI: 10.1080/07391102.2023.2217922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023]
Abstract
A new series of 1-((1-(4-substituted benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-(2-substituted quinolin-4-yl)propan-2-ol (9a-x) have been synthesized. The newly synthesized 1,2,3-triazolyl-quinolinyl-propan-2-ol (9a-x) derivatives were screened for in vitro antimicrobial activity against M. tuberculosis H37Rv, E. coli, P. mirabilis, B. subtilis, and S. albus. Most of the compounds showed good to moderate antibacterial activity and all derivatives have shown excellent to good antitubercular activity with MIC 0.8-12.5 μg/mL. To know the plausible mode of action for antibacterial activity the docking study against DNA gyrase from M. tuberculosis and S. aureus was investigated. The compounds have shown significant docking scores in the range of -9.532 to -7.087 and -9.543 to -6.621 Kcal/mol with the DNA gyrase enzyme of S. aureus (PDB ID: 2XCT) and M. tuberculosis (PDB ID: 5BS8), respectively. Against the S. aureus and M. tuberculosis H37Rv strains, the compound 9 l showed good activity with MIC values of 62.5 and 3.33 μM. It also showed significant docking scores in both targets with -8.291 and -8.885 Kcal/mol, respectively. Molecular dynamics was studied to investigate the structural and dynamics transitions at the atomistic level in S. aureus DNA gyrase (2XCT) and M. tuberculosis DNA gyrase (5BS8). The results revealed that the residues in the active binding pockets of the S. aureus and M. tuberculosis DNA gyrase proteins that interacted with compound 9 l remained relatively consistent throughout the MD simulations and thus, reflected the conformation stability of the respective complexes. Thus, the significant antimicrobial activity of derivatives 9a-x recommended that these compounds could assist in the development of lead compounds to treat for bacterial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijit D Shinde
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Yogesh M Nandurkar
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
- Department of Chemistry, Nowrosjee Wadia College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Swapnil Bhalekar
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Yogesh S Walunj
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
- Department of Chemistry, Hutatma Rajguru Mahavidyalaya, Rajgurunagar, India (Affiliated to Savitribai Phule Pune University)
| | - Sandip Ugale
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Abhijit P Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Pravin C Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| |
Collapse
|
2
|
Varikkodan MM, Kunnathodi F, Azmi S, Wu TY. An Overview of Indian Biomedical Research on the Chikungunya Virus with Particular Reference to Its Vaccine, an Unmet Medical Need. Vaccines (Basel) 2023; 11:1102. [PMID: 37376491 DOI: 10.3390/vaccines11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is an infectious agent spread by mosquitos, that has engendered endemic or epidemic outbreaks of Chikungunya fever (CHIKF) in Africa, South-East Asia, America, and a few European countries. Like most tropical infections, CHIKV is frequently misdiagnosed, underreported, and underestimated; it primarily affects areas with limited resources, like developing nations. Due to its high transmission rate and lack of a preventive vaccine or effective treatments, this virus poses a serious threat to humanity. After a 32-year hiatus, CHIKV reemerged as the most significant epidemic ever reported, in India in 2006. Since then, CHIKV-related research was begun in India, and up to now, more than 800 peer-reviewed research papers have been published by Indian researchers and medical practitioners. This review gives an overview of the outbreak history and CHIKV-related research in India, to favor novel high-quality research works intending to promote effective treatment and preventive strategies, including vaccine development, against CHIKV infection.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
- R&D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
3
|
MBZM-N-IBT, a Novel Small Molecule, Restricts Chikungunya Virus Infection by Targeting nsP2 Protease Activity In Vitro, In Vivo, and Ex Vivo. Antimicrob Agents Chemother 2022; 66:e0046322. [PMID: 35766508 PMCID: PMC9295557 DOI: 10.1128/aac.00463-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increase in disease incidences and persistent Chikungunya virus (CHIKV)-induced arthritis have been a huge burden on public health globally. In the absence of specific antivirals or vaccines, it is essential to continue efforts to develop effective anti-CHIKV strategies. Our previous study showing the in vitro anti-CHIKV potential of a novel molecule 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) encouraged us to further validate its efficacy. Here, the effect of MBZM-N-IBT was evaluated in vitro in RAW 264.7 cells, in vivo in C57BL/6 mice, and ex vivo in human peripheral blood mononuclear cells (hPBMCs). The study demonstrated that CHIKV infection was efficiently abrogated in RAW 264.7 cells (IC50 = 22.34 μM) with significant inhibition in viral proteins. The inhibition was effective in the postentry step, and MBZM-N-IBT predominately interfered in the early stages of CHIKV life cycle. It was further supported when the protease activity of CHIKV-nsP2 was hindered by the compound. Moreover, it diminished the CHIKV-induced inflammatory responses in vitro through significant downregulation of all the major mitogen-activated protein kinases (MAPKs), NF-κB, cyclooxygenase (COX)-2, and cytokines. Furthermore, MBZM-N-IBT restricted CHIKV infection and inflammation in vivo, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, it has been noticed that the CHIKV infection was reduced remarkably in hPBMC-derived monocyte-macrophage populations ex vivo by the compound. In conclusion, it can be suggested that this novel compound MBZM-N-IBT has been demonstrated to be a potential anti-CHIKV molecule in vitro, in vivo, and ex vivo and fulfilled all the criteria to investigate further for successful treatment of CHIKV infection.
Collapse
|
4
|
Eberle RJ, Olivier DS, Amaral MS, Pacca CC, Nogueira ML, Arni RK, Willbold D, Coronado MA. Riboflavin, a Potent Neuroprotective Vitamin: Focus on Flavivirus and Alphavirus Proteases. Microorganisms 2022; 10:1331. [PMID: 35889050 PMCID: PMC9315535 DOI: 10.3390/microorganisms10071331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Several neurotropic viruses are members of the flavivirus and alphavirus families. Infections caused by these viruses may cause long-term neurological sequelae in humans. The continuous emergence of infections caused by viruses around the world, such as the chikungunya virus (CHIKV) (Alphavirus genus), the zika virus (ZIKV) and the yellow fever virus (YFV) (both of the Flavivirus genus), warrants the development of new strategies to combat them. Our study demonstrates the inhibitory potential of the water-soluble vitamin riboflavin against NS2B/NS3pro of ZIKV and YFV and nsP2pro of CHIKV. Riboflavin presents a competitive inhibition mode with IC50 values in the medium µM range of 79.4 ± 5.0 µM for ZIKV NS2B/NS3pro and 45.7 ± 2.9 μM for YFV NS2B/NS3pro. Against CHIKV nsP2pro, the vitamin showed a very strong effect (93 ± 5.7 nM). The determined dissociation constants (KD) are significantly below the threshold value of 30 µM. The ligand binding increases the thermal stability between 4 °C and 8 °C. Unexpectedly, riboflavin showed inhibiting activity against another viral protein; the molecule was also able to inhibit the viral entry of CHIKV. Molecular dynamics simulations indicated great stability of riboflavin in the protease active site, which validates the repurposing of riboflavin as a promising molecule in drug development against the viruses presented here.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
| | - Danilo S. Olivier
- Center of Integrated Sciences, Campus Cimba, Federal University of Tocantins, Araguaína 77824-838, TO, Brazil;
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Carolina C. Pacca
- Instituto Superior de Educação Ceres, FACERES Medical School, São José do Rio Preto 15090-305, SP, Brazil;
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
| | - Mauricio L. Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, IBILCE, São Paulo State University, São Jose do Rio Preto 15054-000, SP, Brazil;
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, 52428 Jülich, Germany
| | - Monika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
| |
Collapse
|
5
|
Sundar S, Piramanayagam S, Natarajan J. A review on structural genomics approach applied for drug discovery against three vector-borne viral diseases: Dengue, Chikungunya and Zika. Virus Genes 2022; 58:151-171. [PMID: 35394596 DOI: 10.1007/s11262-022-01898-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Structural genomics involves the advent of three-dimensional structures of the genome encoded proteins through various techniques available. Numerous structural genomics research groups have been developed across the globe and they contribute enormously to the identification of three-dimensional structures of various proteins. In this review, we have discussed the applications of the structural genomics approach towards the discovery of potential lead-like molecules against the genomic drug targets of three vector-borne diseases, namely, Dengue, Chikungunya and Zika. Currently, all these three diseases are associated with the most important global public health problems and significant economic burden in tropical countries. Structural genomics has accelerated the identification of novel drug targets and inhibitors for the treatment of these diseases. We start with the current development status of the drug targets and antiviral drugs against these three diseases and conclude by describing challenges that need to be addressed to overcome the shortcomings in the process of drug discovery.
Collapse
Affiliation(s)
- Shobana Sundar
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
6
|
Muniz LS, da Rocha Pita SS. In silico studies revealed interaction mechanisms of benzylidene–acrylohydrazide derivatives and nsP2 CHIKV. NEW J CHEM 2022. [DOI: 10.1039/d1nj05593c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here we studied benzylidene–acrylohydrazide derivatives via ADMET properties and docking analysis in the hope that they will be useful chemical moieties against the Chikungunya virus.
Collapse
Affiliation(s)
- Larissa Silva Muniz
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, 147, Salvador, 40170-115, Bahia, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, 147, Salvador, 40170-115, Bahia, Brazil
| |
Collapse
|