1
|
Risangud N, Mama J, Sungkhaphan P, Pananusorn P, Termkunanon O, Arkana MS, Sripraphot S, Lertwimol T, Thongkham S. Synthesis and Characterization of Furan-Based Methacrylate Oligomers Containing the Imine Functional Group for Stereolithography. ACS OMEGA 2024; 9:30771-30781. [PMID: 39035923 PMCID: PMC11256344 DOI: 10.1021/acsomega.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Herein, a furan-based methacrylate oligomer (FBMO) featuring imine functional groups was synthesized for application in stereolithography. The preparation involved the imination reaction of 5-hydroxymethylfurfural (5-HMF) and amino ethanol. Utilizing 5-HMF as a sustainable building block for furan-based polymers, FBMO was formulated and subsequently integrated into photosensitive resin formulations along with methacrylate-containing diluents, such as PEGDMA and TEGDMA. The synthesized furan-based methacrylate oligomers underwent comprehensive characterization using FTIR, 1H NMR spectroscopy, and size exclusion chromatography. The impact of methacrylate-containing diluents on various properties of the formulated resins and the resulting 3D-printed specimens was systematically evaluated. This assessment included an analysis of rheological behavior, printing fidelity, mechanical properties, thermal stability, surface morphology, and cytotoxicity. By adjusting the ratios of FBMO to methacrylate-containing diluents within the range of 50:50 to 90:10, the viscosity of the resulting resins was controlled to fall within 0.04 to 0.28 Pa s at a shear rate of 10 s-1. The 3D-printed specimens exhibited precise conformity to the computer-aided design (CAD) model and demonstrated compressive moduli ranging from 0.53 ± 0.04 to 144 ± 6.70 MPa, dependent on the resin formulation and internal structure. Furthermore, cytotoxicity assessments revealed that the 3D-printed specimens were noncytotoxic to porcine chondrocytes. In conclusion, we introduce a new strategy to prepare the furan-based methacrylate oligomer (FBMO) and 3D-printed specimens with adjustable properties using stereolithography, which can be further utilized for appropriate applications.
Collapse
Affiliation(s)
- Nuttapol Risangud
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
- Petroleum
and Petrochemical College, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Jittima Mama
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | - Piyarat Sungkhaphan
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Puttipong Pananusorn
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Orawan Termkunanon
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | | | - Supang Sripraphot
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | - Tareerat Lertwimol
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Somprasong Thongkham
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
2
|
Jakob A, Likozar B, Grilc M. Model-Assisted Optimization of Xylose, Arabinose, Glucose, Mannose, Galactose and Real Hemicellulose Streams Dehydration To (Hydroxymethyl)Furfural and Levulinic Acid. CHEMSUSCHEM 2024:e202400962. [PMID: 38959341 DOI: 10.1002/cssc.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Conversion of hemicellulose streams and the constituent monosaccharides, xylose, arabinose, glucose, mannose, and galactose, was conducted to produce value-added chemicals, including furfural, hydroxymethylfurfural (HMF), levulinic acid and anhydrosugars. The study aimed at developing a kinetic model relevant for direct post-Organosolv hemicellulose conversion. Monosaccharides served as a tool to in detail describe the kinetic behavior and segregate contribution of hydrothermal decomposition and acid catalyzed dehydration at the temperature range of 120-190 °C. Catalyst free aqueous media demonstrated enhanced formation of furanics, while elevated temperatures led to significant saccharide isomerization. The introduction of sulfuric and formic acids maximized furfural yield and significantly reduced HMF concentration by facilitating its rehydration into levulinic acid (46 mol%). Formic acid additionally substantially enhanced formation of anhydrosaccharides. An excellent correlation between modeled and experimental data enabled process optimization to maximize furanic yield in two distinct hemicellulose streams. Sulfuric acid-containing hemicellulose stream achieved the highest furfural yield after 30 minutes at 238 °C, primarily due to the high Ea for pentose dehydration (150-160 kJ mol-1). Contrarily, formic acid-containing hemicellulose stream enabled maximal furfural yield at more moderate temperature and extended reaction time due to its lower Ea for the same reaction step (115-125 kJ mol-1).
Collapse
Affiliation(s)
- Ana Jakob
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| |
Collapse
|
3
|
Wang YT, Wu SM, Luo GQ, Xiao ST, Pu FF, Wang LY, Chang GG, Tian G, Yang XY. Dual Pd-Acid Sites Confined in a Hierarchical Core-Shell Structure for Hydrogenation of Nitrobenzene. Chem Asian J 2023; 18:e202300689. [PMID: 37704571 DOI: 10.1002/asia.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
A core-shell structured Pd@TS-1@meso-SiO2 catalyst with confined Pd nanometals has been fabricated by one-pot synthesis, impregnation method and sol-gel method. With the promotion of acid sites and protection of mesoporous silica shell, Pd@TS-1@meso-SiO2 shows higher activity than commercial comparison and higher stability than sample without mesoporous silica shell in the hydrogenation of nitrobenzene. The schematic illustration of the synergy effect is also proposed.
Collapse
Affiliation(s)
- Yi-Tian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Guo-Qiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Shi-Tian Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Fu-Fei Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Li-Ying Wang
- Department State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Gang-Gang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| |
Collapse
|
4
|
Kim MS, Chang H, Zheng L, Yan Q, Pfleger BF, Klier J, Nelson K, Majumder ELW, Huber GW. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. Chem Rev 2023; 123:9915-9939. [PMID: 37470246 DOI: 10.1021/acs.chemrev.2c00876] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Environmental concerns over waste plastics' effect on the environment are leading to the creation of biodegradable plastics. Biodegradable plastics may serve as a promising approach to manage the issue of environmental accumulation of plastic waste in the ocean and soil. Biodegradable plastics are the type of polymers that can be degraded by microorganisms into small molecules (e.g., H2O, CO2, and CH4). However, there are misconceptions surrounding biodegradable plastics. For example, the term "biodegradable" on product labeling can be misconstrued by the public to imply that the product will degrade under any environmental conditions. Such misleading information leads to consumer encouragement of excessive consumption of certain goods and increased littering of products labeled as "biodegradable". This review not only provides a comprehensive overview of the state-of-the-art biodegradable plastics but also clarifies the definitions and various terms associated with biodegradable plastics, including oxo-degradable plastics, enzyme-mediated plastics, and biodegradation agents. Analytical techniques and standard test methods to evaluate the biodegradability of polymeric materials in alignment with international standards are summarized. The review summarizes the properties and industrial applications of previously developed biodegradable plastics and then discusses how biomass-derived monomers can create new types of biodegradable polymers by utilizing their unique chemical properties from oxygen-containing functional groups. The terminology and methodologies covered in the paper provide a perspective on directions for the design of new biodegradable polymers that possess not only advanced performance for practical applications but also environmental benefits.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Lei Zheng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Microbiology Doctoral Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - John Klier
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Kevin Nelson
- Amcor, Neenah Innovation Center, Neenah, Wisconsin 54956, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Recent Advances in Lignocellulose-Based Monomers and Their Polymerization. Polymers (Basel) 2023; 15:polym15040829. [PMID: 36850113 PMCID: PMC9964446 DOI: 10.3390/polym15040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Replacing fossil-based polymers with renewable bio-based polymers is one of the most promising ways to solve the environmental issues and climate change we human beings are facing. The production of new lignocellulose-based polymers involves five steps, including (1) fractionation of lignocellulose into cellulose, hemicellulose, and lignin; (2) depolymerization of the fractionated cellulose, hemicellulose, and lignin into carbohydrates and aromatic compounds; (3) catalytic or thermal conversion of the depolymerized carbohydrates and aromatic compounds to platform chemicals; (4) further conversion of the platform chemicals to the desired bio-based monomers; (5) polymerization of the above monomers to bio-based polymers by suitable polymerization methods. This review article will focus on the progress of bio-based monomers derived from lignocellulose, in particular the preparation of bio-based monomers from 5-hydroxymethylfurfural (5-HMF) and vanillin, and their polymerization methods. The latest research progress and application scenarios of related bio-based polymeric materials will be also discussed, as well as future trends in bio-based polymers.
Collapse
|
6
|
Perveen F, Farooq M, Ramli A, Naeem A, khan IW, Saeed T, khan J. Levulinic Acid Production from Waste Corncob Biomass Using an Environmentally Benign WO 3-Grafted ZnCo 2O 4@CeO 2 Bifunctional Heterogeneous Catalyst. ACS OMEGA 2023; 8:333-345. [PMID: 36643508 PMCID: PMC9835630 DOI: 10.1021/acsomega.2c04545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Herein, a novel and environmentally benign solid catalyst was fabricated by grafting WO3 active species onto the ZnCo2O4@CeO2 support for efficient levulinic acid production from corncob waste biomass. The morphological, compositional, and textural properties of the designed catalyst were investigated using different characterization techniques to identify suitable catalyst formulation with enhanced catalytic activity and stability. The results demonstrated that WO3 active species were successfully loaded with uniform distribution onto the support to develop a robust catalyst with both acidic and basic sites. The experimental investigation showed that among the catalysts, WO3(10 wt %)/ZnCo2O4@CeO2 exhibited the best catalytic activity, providing a maximum levulinic acid yield of 78.49% at the optimal conditions of 6 wt % catalyst dosage, reaction temperature of 180 °C, and reaction time of 200 min. The presence of an optimum number of both acid and base active sites on the catalyst surface could lead to the highest catalytic activity of the synthesized catalyst. Finally, the reusability investigation indicated that the synthesized catalyst possessed sufficient recyclability of up to four times for the levulinic acid production from the selected biomass with negligible drop in the catalytic activity.
Collapse
Affiliation(s)
- Fouzia Perveen
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farooq
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar25120, Khyber Pakhtunkhwa, Pakistan
| | - Anita Ramli
- Department
of Fundamental and Applied Sciences, Universiti
Teknologi PETRONAS, Tronoh31750, Malaysia
| | - Abdul Naeem
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar25120, Khyber Pakhtunkhwa, Pakistan
| | - Ihtisham Wali khan
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar25120, Khyber Pakhtunkhwa, Pakistan
| | - Tooba Saeed
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar25120, Khyber Pakhtunkhwa, Pakistan
| | - Jehangeer khan
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|