Abstract
![]()
Porphyrin chemistry is Shakespearean: over a
century of study has
not withered the field’s apparently infinite variety. Heme
proteins continually astonish us with novel molecular mechanisms,
while new porphyrin analogues bowl us over with unprecedented optical,
electronic, and metal-binding properties. Within the latter domain,
corroles occupy a special place, exhibiting a unique and rich coordination
chemistry. The 5d metallocorroles are arguably the icing on that cake.
New Zealand chemist Penny Brothers has used the word “misfit”
to describe the interactions of boron, a small atom with a predilection
for tetrahedral coordination, and porphyrins, classic square-planar
ligands. Steve Jobs lionized misfits as those who see things differently
and push humanity forward. Both perspectives have inspired us. The
5d metallocorroles are misfits in that they encapsulate a large 5d
transition metal ion within the tight cavity of a contracted porphyrin
ligand.
Given the steric mismatch inherent in their structures,
the syntheses
of some 5d metallocorroles are understandably capricious,
proceeding under highly specific conditions and affording poor yields.
Three broad approaches may be distinguished.
(a) In the metal–alkyl approach, a free-base
corrole is exposed to an alkyllithium and the resulting lithio-corrole
is treated with an early transition metal chloride; a variant of the
method eschews alkyllithium and deploys a transition metal–alkyl
instead, resulting in elimination of the alkyl group as an alkane
and insertion of the metal into the corrole. This approach is useful
for inserting transition metals from groups 4, 5, and, to some extent,
6, as well as lanthanides and actinides.
(b) In our laboratory,
we have often deployed a low-valent
organometallic approach for the middle transition elements
(groups 6, 7, 8, and 9). The reagents are low-valent metal–carbonyl
or −olefin complexes, which lose one or more carbon ligands
at high temperature, affording coordinatively unsaturated, sticky
metal fragments that are trapped by the corrole nitrogens.
(c)
Finally, a metal acetate approach provides
the method of choice for gold and platinum insertion (groups 10 and
11).
This Account provides a first-hand perspective
of the three approaches, focusing on the last two, which were largely
developed in our laboratory. In general, the products were characterized
with X-ray crystallography, electrochemistry, and a variety of spectroscopic
methods. The physicochemical data, supplemented by relativistic DFT
calculations, have provided fascinating insights into periodic trends
and relativistic effects.
An unexpected feature of many 5d metallocorroles,
given their misfit
character, is their remarkable stability under thermal, chemical,
and photochemical stimulation. Many of them also exhibit long triplet
lifetimes on the order of 100 μs and effectively sensitize singlet
oxygen formation. Many exhibit phosphorescence in the near-infrared
under ambient conditions. Furthermore, water-soluble ReO and Au corroles
exhibit impressive photocytotoxicity against multiple cancer cell
lines, promising potential applications as cancer phototherapeutics.
We thus envision a bright future for the compounds as rugged building
blocks for new generations of therapeutic and diagnostic (theranostic)
agents.
Collapse