1
|
Chassé M, Vasdev N. PET in neurotherapeutic discovery and development. Neurotherapeutics 2024; 22:e00498. [PMID: 39665954 DOI: 10.1016/j.neurot.2024.e00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
Positron emission tomography (PET) is a highly sensitive, quantitative imaging technique that can track sub-nanomolar quantities of positron-emitting radionuclides throughout the body. By incorporating such radionuclides into molecules of interest, we can directly assess their pharmacokinetic and pharmacodynamic (PK/PD) characteristics in vivo without changing their physicochemical characteristics or eliciting a pharmacological response. As such, PET imaging has long been used as a tool to aid drug discovery programs from preclinical biomarker validation all the way through to clinical trials. In this perspective we discuss the use of PET radioligands in central nervous system (CNS) drug discovery and development, with a focus on recent applications in psychiatry (e.g. 5-HT2A, 11β-HSD1), neuro-oncology (e.g. KRASG12C, ATM, ALK2), and neurodegeneration (e.g. amyloid beta plaques, MAPK p38), while exploring the intricacies associated with developing novel radiotracers for CNS targets. Examples highlight the preclinical and clinical uses of PET for studying biomarker function, drug candidate PK/PD, target occupancy/engagement, dosing regimen determination, clinical trial patient selection, and quantifying biomarker changes in response to treatments.
Collapse
Affiliation(s)
- Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
2
|
Jimmidi R, Monsivais D, Ta HM, Sharma KL, Bohren KM, Chamakuri S, Liao Z, Li F, Hakenjos JM, Li JY, Mishina Y, Pan H, Qin X, Robers MB, Sankaran B, Tan Z, Tang S, Vasquez YM, Wilkinson J, Young DW, Palmer SS, MacKenzie KR, Kim C, Matzuk MM. Discovery of highly potent and ALK2/ALK1 selective kinase inhibitors using DNA-encoded chemistry technology. Proc Natl Acad Sci U S A 2024; 121:e2413108121. [PMID: 39541346 PMCID: PMC11588046 DOI: 10.1073/pnas.2413108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Activin receptor type 1 (ACVR1; ALK2) and activin receptor like type 1 (ACVRL1; ALK1) are transforming growth factor beta family receptors that integrate extracellular signals of bone morphogenic proteins (BMPs) and activins into Mothers Against Decapentaplegic homolog 1/5 (SMAD1/SMAD5) signaling complexes. Several activating mutations in ALK2 are implicated in fibrodysplasia ossificans progressiva (FOP), diffuse intrinsic pontine gliomas, and ependymomas. The ALK2 R206H mutation is also present in a subset of endometrial tumors, melanomas, non-small lung cancers, and colorectal cancers, and ALK2 expression is elevated in pancreatic cancer. Using DNA-encoded chemistry technology, we screened 3.94 billion unique compounds from our diverse DNA-encoded chemical libraries (DECLs) against the kinase domain of ALK2. Off-DNA synthesis of DECL hits and biochemical validation revealed nanomolar potent ALK2 inhibitors. Further structure-activity relationship studies yielded center for drug discovery (CDD)-2789, a potent [NanoBRET (NB) cell IC50: 0.54 μM] and metabolically stable analog with good pharmacological profile. Crystal structures of ALK2 bound with CDD-2281, CDD-2282, or CDD-2789 show that these inhibitors bind the active site through Van der Waals interactions and solvent-mediated hydrogen bonds. CDD-2789 exhibits high selectivity toward ALK2/ALK1 in KINOMEscan analysis and NB K192 assay. In cell-based studies, ALK2 inhibitors effectively attenuated activin A and BMP-induced Phosphorylated SMAD1/5 activation in fibroblasts from individuals with FOP in a dose-dependent manner. Thus, CDD-2789 is a valuable tool compound for further investigation of the biological functions of ALK2 and ALK1 and the therapeutic potential of specific inhibition of ALK2.
Collapse
Affiliation(s)
- Ravikumar Jimmidi
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Hai Minh Ta
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Kiran L. Sharma
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Kurt M. Bohren
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Zian Liao
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - John M. Hakenjos
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Jian-Yuan Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Yuji Mishina
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI48109
| | - Haichun Pan
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI48109
| | - Xuan Qin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | | | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Zhi Tan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Suni Tang
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Yasmin M. Vasquez
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | | | - Damian W. Young
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Stephen S. Palmer
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Choel Kim
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
3
|
Koo J, Seong CS, Parker RE, Herrera A, Dwivedi B, Arthur RA, Dinasarapu AR, Johnston HR, Claussen H, Tucker-Burden C, Ramalingam SS, Fu H, Zhou W, Marcus AI, Gilbert-Ross M. Live-Cell Invasive Phenotyping Uncovers ALK2 as a Therapeutic Target in LKB1-Mutant Lung Cancer. Cancer Res 2024; 84:3761-3771. [PMID: 39207369 PMCID: PMC11565166 DOI: 10.1158/0008-5472.can-23-2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that contribute to unique growth properties and therapeutic susceptibilities. Despite this, preclinical strategies designed to exploit growth within the context of invasion are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early 3D invasion phenotypes in different molecular subtypes of KRAS-driven lung adenocarcinoma. Combined live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix and transcriptomic profiling identified mutant LKB1-specific upregulation of BMP6. LKB1 loss increased BMP6 signaling, which induced the canonical iron regulatory hormone hepcidin. Intact LKB1 was necessary to maintain BMP6 signaling homeostasis and restrict ALK2/BMP6-fueled growth. Preclinical studies in a Kras/Lkb1-mutant syngeneic mouse model and in a xenograft model showed potent growth suppression by inhibiting the ALK2/BMP6 signaling axis with single-agent inhibitors that are currently in clinical trials. Lastly, BMP6 expression was elevated in tumors of patients with LKB1-mutant early-stage lung cancer. These results are consistent with those of a model in which LKB1 acts as a "brake" to iron-regulated growth and suggest that ALK2 inhibition can be used for patients with LKB1-mutant tumors. Significance: Three-dimensional invasion-linked gene expression analysis reveals a therapeutic vulnerability to inhibition of ALK2/BMP6 signaling in LKB1-mutant lung cancer that can be rapidly translated to the clinic.
Collapse
Affiliation(s)
- Junghui Koo
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca E. Parker
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Cancer Biology Graduate Program, Emory University, Atlanta, Georgia
| | - Amy Herrera
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Bhakti Dwivedi
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | | | - Henry Richard Johnston
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | - Carol Tucker-Burden
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Haian Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Němec V, Remeš M, Beňovský P, Böck MC, Šranková E, Wong JF, Cros J, Williams E, Tse LH, Smil D, Ensan D, Isaac MB, Al-Awar R, Gomolková R, Ursachi VC, Fafílek B, Kahounová Z, Víchová R, Vacek O, Berger BT, Wells CI, Corona CR, Vasta JD, Robers MB, Krejci P, Souček K, Bullock AN, Knapp S, Paruch K. Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2. J Med Chem 2024; 67:12632-12659. [PMID: 39023313 PMCID: PMC11320582 DOI: 10.1021/acs.jmedchem.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.
Collapse
Affiliation(s)
- Václav Němec
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Marek Remeš
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Beňovský
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Michael C. Böck
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Eliška Šranková
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Jong Fu Wong
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Julien Cros
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Eleanor Williams
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Lap Hang Tse
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - David Smil
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Deeba Ensan
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Methvin B. Isaac
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Regina Gomolková
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vlad-Constantin Ursachi
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Bohumil Fafílek
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Zuzana Kahounová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ráchel Víchová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ondřej Vacek
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Benedict-Tilman Berger
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Carrow I. Wells
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - James D. Vasta
- Promega Corporation, Madison, Wisconsin 53716, United States
| | | | - Pavel Krejci
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Karel Souček
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Alex N. Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Stefan Knapp
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Kamil Paruch
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
5
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
6
|
Davis AJ, Brooijmans N, Brubaker JD, Stevison F, LaBranche TP, Albayya F, Fleming P, Hodous BL, Kim JL, Kim S, Lobbardi R, Palmer M, Sheets MP, Vassiliadis J, Wang R, Williams BD, Wilson D, Xu L, Zhu XJ, Bouchard K, Hunter JW, Graul C, Greenblatt E, Hussein A, Lyon M, Russo J, Stewart R, Dorsch M, Guzi TJ, Kadambi V, Lengauer C, Garner AP. An ALK2 inhibitor, BLU-782, prevents heterotopic ossification in a mouse model of fibrodysplasia ossificans progressiva. Sci Transl Med 2024; 16:eabp8334. [PMID: 38809966 DOI: 10.1126/scitranslmed.abp8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease driven by gain-of-function variants in activin receptor-like kinase 2 (ALK2), the most common variant being ALK2R206H. In FOP, ALK2 variants display increased and dysregulated signaling through the bone morphogenetic protein (BMP) pathway resulting in progressive and permanent replacement of skeletal muscle and connective tissues with heterotopic bone, ultimately leading to severe debilitation and premature death. Here, we describe the discovery of BLU-782 (IPN60130), a small-molecule ALK2R206H inhibitor developed for the treatment of FOP. A small-molecule library was screened in a biochemical ALK2 binding assay to identify potent ALK2 binding compounds. Iterative rounds of structure-guided drug design were used to optimize compounds for ALK2R206H binding, ALK2 selectivity, and other desirable pharmacokinetic properties. BLU-782 preferentially bound to ALK2R206H with high affinity, inhibiting signaling from ALK2R206H and other rare FOP variants in cells in vitro without affecting signaling of closely related homologs ALK1, ALK3, and ALK6. In vivo efficacy of BLU-782 was demonstrated using a conditional knock-in ALK2R206H mouse model, where prophylactic oral dosing reduced edema and prevented cartilage and heterotopic ossification (HO) in both muscle and bone injury models. BLU-782 treatment preserved the normal muscle-healing response in ALK2R206H mice. Delayed dosing revealed a short 2-day window after injury when BLU-782 treatment prevented HO in ALK2R206H mice, but dosing delays of 4 days or longer abrogated HO prevention. Together, these data suggest that BLU-782 may be a candidate for prevention of HO in FOP.
Collapse
Affiliation(s)
- Alison J Davis
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | | - Faith Stevison
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | - Faris Albayya
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Paul Fleming
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Brian L Hodous
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Joseph L Kim
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Sean Kim
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Riadh Lobbardi
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Michael Palmer
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | | - Ruduan Wang
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | - Douglas Wilson
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Lan Xu
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Xing Julia Zhu
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | - Marion Dorsch
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Timothy J Guzi
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Vivek Kadambi
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
7
|
Tyagi A, Jaggupilli A, Ly S, Yuan B, El-Dana F, Hegde VL, Anand V, Kumar B, Puppala M, Yin Z, Wong STC, Mollard A, Vankayalapati H, Foulks JM, Warner SL, Daver N, Borthakur G, Battula VL. TP-0184 inhibits FLT3/ACVR1 to overcome FLT3 inhibitor resistance and hinder AML growth synergistically with venetoclax. Leukemia 2024; 38:82-95. [PMID: 38007585 DOI: 10.1038/s41375-023-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
We identified activin A receptor type I (ACVR1), a member of the TGF-β superfamily, as a factor favoring acute myeloid leukemia (AML) growth and a new potential therapeutic target. ACVR1 is overexpressed in FLT3-mutated AML and inhibition of ACVR1 expression sensitized AML cells to FLT3 inhibitors. We developed a novel ACVR1 inhibitor, TP-0184, which selectively caused growth arrest in FLT3-mutated AML cell lines. Molecular docking and in vitro kinase assays revealed that TP-0184 binds to both ACVR1 and FLT3 with high affinity and inhibits FLT3/ACVR1 downstream signaling. Treatment with TP-0184 or in combination with BCL2 inhibitor, venetoclax dramatically inhibited leukemia growth in FLT3-mutated AML cell lines and patient-derived xenograft models in a dose-dependent manner. These findings suggest that ACVR1 is a novel biomarker and plays a role in AML resistance to FLT3 inhibitors and that FLT3/ACVR1 dual inhibitor TP-0184 is a novel potential therapeutic tool for AML with FLT3 mutations.
Collapse
Affiliation(s)
- Anudishi Tyagi
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Appalaraju Jaggupilli
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stanley Ly
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fouad El-Dana
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Venkatesh L Hegde
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mamta Puppala
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Alexis Mollard
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | | | - Naval Daver
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Duminuco A, Chifotides HT, Giallongo S, Giallongo C, Tibullo D, Palumbo GA. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers (Basel) 2023; 16:154. [PMID: 38201581 PMCID: PMC10778144 DOI: 10.3390/cancers16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Activin receptor type I (ACVR1) is a transmembrane kinase receptor belonging to bone morphogenic protein receptors (BMPs). ACVR1 plays an important role in hematopoiesis and anemia via the BMP6/ACVR1/SMAD pathway, which regulates expression of hepcidin, the master regulator of iron homeostasis. Elevated hepcidin levels are inversely associated with plasma iron levels, and chronic hepcidin expression leads to iron-restricted anemia. Anemia is one of the hallmarks of myelofibrosis (MF), a bone marrow (BM) malignancy characterized by BM scarring resulting in impaired hematopoiesis, splenomegaly, and systemic symptoms. Anemia and red blood cell transfusions negatively impact MF prognosis. Among the approved JAK inhibitors (ruxolitinib, fedratinib, momelotinib, and pacritinib) for MF, momelotinib and pacritinib are preferably used in cytopenic patients; both agents are potent ACVR1 inhibitors that suppress hepcidin expression via the BMP6/ACVR1/SMAD pathway and restore iron homeostasis/erythropoiesis. In September 2023, momelotinib was approved as a treatment for patients with MF and anemia. Zilurgisertib (ACVR1 inhibitor) and DISC-0974 (anti-hemojuvelin monoclonal antibody) are evaluated in early phase clinical trials in patients with MF and anemia. Luspatercept (ACVR2B ligand trap) is assessed in transfusion-dependent MF patients in a registrational phase 3 trial. Approved ACVR1 inhibitors and novel agents in development are poised to improve the outcomes of anemic MF patients.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
| | - Helen T. Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Houston, TX 77030, USA;
| | - Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giuseppe A. Palumbo
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| |
Collapse
|
9
|
Oh ST, Mesa RA, Harrison CN, Bose P, Gerds AT, Gupta V, Scott BL, Kiladjian JJ, Lucchesi A, Kong T, Buckley SA, Tyavanagimatt S, Harder BG, Roman-Torres K, Smith J, Craig AR, Mascarenhas J, Verstovsek S. Pacritinib is a potent ACVR1 inhibitor with significant anemia benefit in patients with myelofibrosis. Blood Adv 2023; 7:5835-5842. [PMID: 37552106 PMCID: PMC10561048 DOI: 10.1182/bloodadvances.2023010151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
In patients with cytopenic myelofibrosis, treatment with the JAK2/IRAK1 inhibitor pacritinib was associated with anemia benefit in the phase 3 PERSIST-2 study. The impact of pacritinib on transfusion independence (TI) has not been previously described, nor has the mechanism by which pacritinib improves anemia been elucidated. Because it has been previously postulated that inhibition of activin A receptor, type 1 (ACVR1)/activin receptor-like kinase-2 improves anemia in patients with myelofibrosis via suppression of hepcidin production, we assessed the relative inhibitory potency of pacritinib compared with other JAK2 inhibitors against ACVR1. Pacritinib inhibited ACVR1 with greater potency (half-maximal inhibitory concentration [IC50] = 16.7 nM; Cmax:IC50 = 12.7) than momelotinib (IC50 = 52.5 nM; Cmax:IC50 = 3.2), fedratinib (IC50 = 273 nM; Cmax:IC50 = 1.0), or ruxolitinib (IC50 > 1000; Cmax:IC50 < 0.01). Pacritinib's inhibitory activity against ACVR1 was corroborated via inhibition of downstream SMAD signaling in conjunction with marked suppression of hepcidin production. Among patients on PERSIST-2 who were not transfusion independent at baseline based on Gale criteria, a significantly greater proportion achieved TI on pacritinib compared with those treated on best available therapy (37% vs 7%, P = .001), and significantly more had a ≥50% reduction in transfusion burden (49% vs 9%, P < .0001). These data indicate that the anemia benefit of the JAK2/IRAK1 inhibitor pacritinib may be a function of potent ACVR1 inhibition.
Collapse
Affiliation(s)
- Stephen T. Oh
- Washington University School of Medicine, St. Louis, MO
| | - Ruben A. Mesa
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | | | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aaron T. Gerds
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori,” Meldola, Italy
| | - Tim Kong
- Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
10
|
Fragkiadakis M, Anastasiou PK, Zingiridis M, Triantafyllou-Rundell ME, Reyes Romero A, Stoumpos CC, Neochoritis CG. Instant Macrocyclizations via Multicomponent Reactions. J Org Chem 2023; 88:12709-12715. [PMID: 37596972 DOI: 10.1021/acs.joc.3c01379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Macrocycles fascinate chemists due to both their structure and their applications. However, we still lack efficient and sustainable synthetic methods, giving us straightforward access to them. Herein, a rapid macrocyclization utilizing a two-step, one-pot approach based on orthogonal multicomponent reaction (MCR) tactics is introduced. This synthetic protocol, which is based on Ugi and Groebke-Blackburn-Bienaymé reactions with isocyanides tethered to alkyl tosylates, yields medium sized macrocycles that are otherwise difficult to achieve. Single crystal structures reveal conformational reorganization via intramolecular hydrogen bonding, and modeling studies profile the synthesized libraries.
Collapse
Affiliation(s)
| | | | - Marios Zingiridis
- Department of Chemistry, University of Crete, Voutes, 70013 Heraklion, Greece
| | | | - Atilio Reyes Romero
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, P.O. Box 24144, New York, New York 10065, United States
| | - Constantinos C Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, 70013 Heraklion, Greece
| | | |
Collapse
|
11
|
Koo J, Seong CS, Parker RE, Dwivedi B, Arthur RA, Dinasarapu AR, Johnston HR, Claussen H, Tucker-Burden C, Ramalingam SS, Fu H, Zhou W, Marcus AI, Gilbert-Ross M. Live-cell invasive phenotyping uncovers the ALK2/BMP6 iron homeostasis pathway as a therapeutic vulnerability in LKB1-mutant lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544941. [PMID: 37398244 PMCID: PMC10312689 DOI: 10.1101/2023.06.14.544941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.
Collapse
Affiliation(s)
- Junghui Koo
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca E. Parker
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Cancer Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA, USA
| | | | - H. Richard Johnston
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Carol Tucker-Burden
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Fukuda T, Suzuki E, Fukuda R. Bone morphogenetic protein signaling is a possible therapeutic target in gynecologic cancer. Cancer Sci 2023; 114:722-729. [PMID: 36468782 PMCID: PMC9986083 DOI: 10.1111/cas.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily. BMPs play crucial roles in embryogenesis and bone remodeling. Recently, BMP signaling has been found to have diverse effects on different types of tumors. In this review, we summarized the effects of BMP signaling on gynecologic cancer. BMP signaling has tumor-promoting effects on ovarian cancer (OC) and endometrial cancer (EC), whereas it has tumor-suppressing effects on uterine cervical cancer (UCC). Interestingly, EC has frequent gain-of-function mutations in ACVR1, encoding one of the type I BMP receptors, which are also observed in fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. Little is known about the relationship between BMP signaling and other gynecologic cancers. Tumor-promoting effects of BMP signaling in OC and EC are dependent on the promotion of cancer stemness and epithelial-mesenchymal transition (EMT). In accordance, BMP receptor kinase inhibitors suppress the cell growth and migration of OC and EC. Since both cancer stemness and EMT are associated with chemoresistance, BMP signaling activation might also be an important mechanism by which OC and EC patients acquire chemoresistance. Therefore, BMP inhibitors are promising for OC and EC patients even if they become resistant to standard chemotherapy. In contrast, BMP signaling inhibits UCC growth in vitro. However, the in vivo effects of BMP signaling have not been elucidated in UCC. In conclusion, BMP signaling has a variety of functions, depending on the types of gynecologic cancer. Therefore, targeting BMP signaling should improve the treatment of patients with gynecologic cancer.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Risa Fukuda
- Division of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
13
|
Pulik Ł, Mierzejewski B, Sibilska A, Grabowska I, Ciemerych MA, Łęgosz P, Brzóska E. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther 2022; 13:523. [PMID: 36522666 PMCID: PMC9753082 DOI: 10.1186/s13287-022-03213-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of bone in non-osseous tissues, such as skeletal muscles. The HO could have a genetic or a non-genetic (acquired) background, that is, it could be caused by musculoskeletal trauma, such as burns, fractures, joint arthroplasty (traumatic HO), or cerebral or spinal insult (neurogenetic HO). HO formation is caused by the differentiation of stem or progenitor cells induced by local or systemic imbalances. The main factors described so far in HO induction are TGFβ1, BMPs, activin A, oncostatin M, substance P, neurotrophin-3, and WNT. In addition, dysregulation of noncoding RNAs, such as microRNA or long noncoding RNA, homeostasis may play an important role in the development of HO. For example, decreased expression of miRNA-630, which is responsible for the endothelial-mesenchymal transition, was observed in HO patients. The reduced level of miRNA-421 in patients with humeral fracture was shown to be associated with overexpression of BMP2 and a higher rate of HO occurrence. Down-regulation of miRNA-203 increased the expression of runt-related transcription factor 2 (RUNX2), a crucial regulator of osteoblast differentiation. Thus, understanding the various functions of noncoding RNAs can reveal potential targets for the prevention or treatment of HO.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland.
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| |
Collapse
|
14
|
Kargbo R. ALK Inhibitors for Treating Cancer, Blood, and Kidney Diseases. ACS Med Chem Lett 2022; 13:1539-1541. [PMID: 36267131 PMCID: PMC9578028 DOI: 10.1021/acsmedchemlett.2c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/30/2022] Open
Abstract
Cancers that traditionally have been resistant to apoptosis via chemical- or radiation-based therapies may respond when the treatments are combined with ALK-5 inhibition. Disclosures in this Patent Highlight provide inhibitors of activin-receptor-like kinases such as ALK-5, compositions and methods for increasing red blood cell or hemoglobin levels, and activin antagonists to treat, prevent, or reduce the progression rate or severity of kidney disease.
Collapse
|
15
|
Nagar G, Mittal P, Gupta SRR, Pahuja M, Sanger M, Mishra R, Singh A, Singh IK. Multi-omics therapeutic perspective on ACVR1 gene: from genetic alterations to potential targeting. Brief Funct Genomics 2022; 22:123-142. [PMID: 36003055 DOI: 10.1093/bfgp/elac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A receptor type I (ACVR1), a transmembrane serine/threonine kinase, belongs to the transforming growth factor-β superfamily, which signals via phosphorylating the downstream effectors and SMAD transcription factors. Its central role in several biological processes and intracellular signaling is well known. Genetic variation in ACVR1 has been associated with a rare disease, fibrodysplasia ossificans progressive, and its somatic alteration is reported in rare cancer diffuse intrinsic pontine glioma. Furthermore, altered expression or variation of ACVR1 is associated with multiple pathologies such as polycystic ovary syndrome, congenital heart defects, diffuse idiopathic skeletal hyperostosis, posterior fossa ependymoma and other malignancies. Recent advancements have witnessed ACVR1 as a potential pharmacological target, and divergent promising approaches for its therapeutic targeting have been explored. This review highlights the structural and functional characteristics of receptor ACVR1, associated signaling pathways, genetic variants in several diseases and cancers, protein-protein interaction, gene expression, regulatory miRNA prediction and potential therapeutic targeting approaches. The comprehensive knowledge will offer new horizons and insights into future strategies harnessing its therapeutic potential.
Collapse
|
16
|
Nguyen MH, Atasoylu O, Wu L, Kapilashrami K, Pusey M, Gallagher K, Lai CT, Zhao P, Barbosa J, Liu K, He C, Zhang C, Styduhar ED, Witten MR, Chen Y, Lin L, Yang YO, Covington M, Diamond S, Yeleswaram S, Yao W. Discovery of Novel Pyrazolopyrimidines as Potent, Selective, and Orally Bioavailable Inhibitors of ALK2. ACS Med Chem Lett 2022; 13:1159-1164. [DOI: 10.1021/acsmedchemlett.2c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Minh H. Nguyen
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Onur Atasoylu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Liangxing Wu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kanishk Kapilashrami
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Michelle Pusey
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Karen Gallagher
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Cheng-Tsung Lai
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Peng Zhao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Joseph Barbosa
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kai Liu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Chunhong He
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Colin Zhang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Evan D. Styduhar
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Michael R. Witten
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Yaoyu Chen
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Luping Lin
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Yan-ou Yang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Maryanne Covington
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Sharon Diamond
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Swamy Yeleswaram
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Wenqing Yao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| |
Collapse
|
17
|
Ehata S, Miyazono K. Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Front Cell Dev Biol 2022; 10:883523. [PMID: 35693928 PMCID: PMC9174896 DOI: 10.3389/fcell.2022.883523] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, are multifunctional cytokines. BMPs have a broad range of functions, and abnormalities in BMP signaling pathways are involved in cancer progression. BMPs activate the proliferation of certain cancer cells. Malignant phenotypes of cancer cells, such as increased motility, invasiveness, and stemness, are enhanced by BMPs. Simultaneously, BMPs act on various cellular components and regulate angiogenesis in the tumor microenvironment. Thus, BMPs function as pro-tumorigenic factors in various types of cancer. However, similar to TGF-β, which shows both positive and negative effects on tumorigenesis, BMPs also act as tumor suppressors in other types of cancers. In this article, we review important findings published in the recent decade and summarize the pro-oncogenic functions of BMPs and their underlying mechanisms. The current status of BMP-targeted therapies for cancers is also discussed.
Collapse
Affiliation(s)
- Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Shogo Ehata,
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Ullrich T, Arista L, Weiler S, Teixeira-Fouchard S, Broennimann V, Stiefl N, Head V, Kramer I, Guth S. Discovery of a novel 2-aminopyrazine-3-carboxamide as a potent and selective inhibitor of Activin Receptor-Like Kinase-2 (ALK2) for the treatment of fibrodysplasia ossificans progressiva. Bioorg Med Chem Lett 2022; 64:128667. [PMID: 35276359 DOI: 10.1016/j.bmcl.2022.128667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Inhibition of mutant activin A type-1 receptor ACVR1 (ALK2) signaling by small-molecule drugs is a promising therapeutic approach to treat fibrodysplasia ossificans progressiva (FOP), an ultra-rare disease leading to progressive soft tissue heterotopic ossification with no curative treatment available to date. Here, we describe the synthesis and in vitro characterization of a novel series of 2-aminopyrazine-3-carboxamides that led to the discovery of Compound 23 showing excellent biochemical and cellular potency, selectivity over other BMP and TGFβ signaling receptor kinases, and a favorable in vitro ADME profile.
Collapse
Affiliation(s)
- Thomas Ullrich
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland.
| | - Luca Arista
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland
| | - Sven Weiler
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland
| | | | - Valérie Broennimann
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland
| | - Nikolaus Stiefl
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland
| | - Victoria Head
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland
| | - Ina Kramer
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland
| | - Sabine Guth
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel CH-4002, Switzerland
| |
Collapse
|
19
|
Bioanalysis of INCB000928 in human saliva: nonspecific binding and inhomogeneous concentration. Bioanalysis 2022; 14:405-419. [PMID: 35264018 DOI: 10.4155/bio-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To develop a bioanalytical method for quantifying INCB000928 in human saliva. Materials & methods: Human centrifuged saliva and human whole saliva were compared for matrix selection. Protein precipitation extraction and HPLC-MS/MS was used for analysis. Results & conclusion: Nonspecific binding of INCB000928 was reduced in whole versus centrifuged saliva. Whole saliva was a preferred matrix for INCB000928 bioanalytical method validation. Incurred sample reanalysis (ISR) using a successfully validated method failed in a healthy volunteer study because of inhomogeneous INCB000928 concentration across sample tube depths. Individual mixing of sample tubes followed by immediate aliquoting corrected the ISR failure, with 97.2% of repeats passing versus 41.7% for the same ISR samples.
Collapse
|