1
|
Zhu L, Xu J, Gan R, Xu D, Wang J, Zhou J, Ma H. Exploring peptides from toad venom for source identification by LC-MS/MS using MRM method. J Pharm Biomed Anal 2024; 239:115901. [PMID: 38091819 DOI: 10.1016/j.jpba.2023.115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Toad venom is a traditional Chinese medicine (TCM) with various sources and wide-ranging preparations. Previous quality assessment studies primarily concentrated on small molecular compounds like toad dienolactones and indole alkaloids, studies on macromolecular peptides and proteins as quality assessment standards remained at the qualitative stage, lacking the development of practical and convenient quantitative methods. In this study, to explore the peptides from toad venom as a new method for identifying and evaluating its source, a complete scan of the water extract of peptides from toad venom was conducted using HPLC-Quadrupole Time-of-Flight Mass Spectrometer (Q-TOF) 5600, leading to the identification of peptides based on mass spectrometry data. Subsequently, HPLC- Quadrupole-Linear Ion Trap Mass Spectrometer (Q-Trap) 5500 employing Multiple Reaction Monitoring (MRM) mode was utilized to quantitatively analyze peptides in various sources of toad venom, followed by Partial Least Squares Discriminant Analysis (PLS-DA) to further analyze the data and evaluate the effectiveness. This study highlights the importance of exploring macromolecular substance in natural products research and provides a foundation for further studies on toad venom.
Collapse
Affiliation(s)
- Lei Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junde Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Gan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dihui Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaojiao Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Sun YY, Ni YJ, Wang RJ, Qin ZC, Liu Z, Xiao LH, Liu YQ. Establishment and Validation of a Transdermal Drug Delivery System for the Anti-Depressant Drug Citalopram Hydrobromide. Molecules 2024; 29:767. [PMID: 38398519 PMCID: PMC10892536 DOI: 10.3390/molecules29040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
To enhance the bioavailability and antihypertensive effect of the anti-depressant drug citalopram hydrobromide (CTH) we developed a sustained-release transdermal delivery system containing CTH. A transdermal diffusion meter was first used to determine the optimal formulation of the CTH transdermal drug delivery system (TDDS). Then, based on the determined formulation, a sustained-release patch was prepared; its physical characteristics, including quality, stickiness, and appearance, were evaluated, and its pharmacokinetics and irritation to the skin were evaluated by applying it to rabbits and rats. The optimal formulation of the CTH TDDS was 49.2% hydroxypropyl methyl cellulose K100M, 32.8% polyvinylpyrrolidone K30, 16% oleic acid-azone, and 2% polyacrylic acid resin II. The system continuously released an effective dose of CTH for 24 h and significantly enhanced its bioavailability, with a higher area under the curve, good stability, and no skin irritation. The developed CTH TDDS possessed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it has the potential for clinical application as an antidepressant.
Collapse
Affiliation(s)
- Yi-yang Sun
- College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.-y.S.); (Y.-j.N.); (R.-j.W.); (Z.-c.Q.)
| | - Ya-jing Ni
- College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.-y.S.); (Y.-j.N.); (R.-j.W.); (Z.-c.Q.)
| | - Run-jia Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.-y.S.); (Y.-j.N.); (R.-j.W.); (Z.-c.Q.)
| | - Zi-cheng Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.-y.S.); (Y.-j.N.); (R.-j.W.); (Z.-c.Q.)
| | - Zhao Liu
- Harvest Pharmaceutical Co., Ltd., Changsha 410000, China; (Z.L.); (L.-h.X.)
| | - Li-hui Xiao
- Harvest Pharmaceutical Co., Ltd., Changsha 410000, China; (Z.L.); (L.-h.X.)
| | - Yan-qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.-y.S.); (Y.-j.N.); (R.-j.W.); (Z.-c.Q.)
| |
Collapse
|
3
|
Sousa AS, Serra J, Estevens C, Costa R, Ribeiro AJ. Leveraging a multivariate approach towards enhanced development of direct compression extended release tablets. Int J Pharm 2023; 646:123432. [PMID: 37739095 DOI: 10.1016/j.ijpharm.2023.123432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Extended release formulations play a crucial role in the pharmaceutical industry by maintaining steady plasma levels, reducing side effects, and improving therapeutic efficiency and compliance. One commonly used method to develop extended release formulations is direct compression, which offers several advantages, such as simplicity, time savings, and cost-effectiveness. However, successful direct compression-based extended release formulations require careful assessment and an understanding of the excipients' attributes. The scope of this work is the characterization of the compaction behavior of some matrix-forming agents and diluents for the development of extended release tablets. Fifteen excipients commonly used in extended release formulations were evaluated for physical, compaction and tablet properties. Powder properties (e.g., particle size, flow properties, bulk density) were evaluated and linked to the tablet's mechanical properties in a fully integrated approach, and data were analyzed by constructing a principal component analysis (PCA). Significant variability was observed among the various excipients. The present work successfully demonstrates the applicability of PCA as an effective tool for comparative analysis, pattern and clustering recognition and correlations between excipients and their properties, facilitating the development and manufacturing of direct compressible extended release formulations.
Collapse
Affiliation(s)
- A S Sousa
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - J Serra
- Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - C Estevens
- Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - R Costa
- Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; i3S, IBMC, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
4
|
Mawla N, Alshafiee M, Gamble J, Tobyn M, Liu L, Walton K, Conway BR, Timmins P, Asare-Addo K. Comparative Evaluation of the Powder and Tableting Properties of Regular and Direct Compression Hypromellose from Different Vendors. Pharmaceutics 2023; 15:2154. [PMID: 37631368 PMCID: PMC10459357 DOI: 10.3390/pharmaceutics15082154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Hypromellose, a widely used polymer in the pharmaceutical industry, is available in several grades, depending on the percentage of substitution of the methoxyl and hydroxypropyl groups and molecular weight, and in various functional forms (e.g., suitable for direct compression tableting). These differences can affect their physicomechanical properties, and so this study aims to characterise the particle size and mechanical properties of HPMC K100M polymer grades from four different vendors. Eight polymers (CR and DC grades) were analysed using scanning electron microscopy (SEM) and light microscopy automated image analysis particle characterisation to examine the powder's particle morphology and particle size distribution. Bulk density, tapped density, and true density of the materials were also analysed. Flow was determined using a shear cell tester. Flat-faced polymer compacts were made at five different compression forces and the mechanical properties of the compacts were evaluated to give an indication of the powder's capacity to form a tablet with desirable strength under specific pressures. The results indicated that the CR grades of the polymers displayed a smaller particle size and better mechanical properties compared to the DC grade HPMC K100M polymers. The DC grades, however, had better flow properties than their CR counterparts. The results also suggested some similarities and differences between some of the polymers from the different vendors despite the similarity in substitution level, reminding the user that care and consideration should be given when substitution is required.
Collapse
Affiliation(s)
- Nihad Mawla
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (N.M.); (M.A.); (B.R.C.)
| | - Maen Alshafiee
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (N.M.); (M.A.); (B.R.C.)
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, Merseyside CH46 1QW, UK; (J.G.); (M.T.)
| | - Mike Tobyn
- Drug Product Development, Bristol Myers Squibb, Moreton, Merseyside CH46 1QW, UK; (J.G.); (M.T.)
| | - Lande Liu
- Department of Chemical Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Karl Walton
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Barbara R. Conway
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (N.M.); (M.A.); (B.R.C.)
| | - Peter Timmins
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (N.M.); (M.A.); (B.R.C.)
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (N.M.); (M.A.); (B.R.C.)
| |
Collapse
|
5
|
Orally Disintegrating Film: A New Approach to Nutritional Supplementation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|