1
|
Shah D, Patel A. Eco-friendly approaches to 1,3,4-oxadiazole derivatives: A comprehensive review of green synthetic strategies. Arch Pharm (Weinheim) 2024; 357:e2400185. [PMID: 38877614 DOI: 10.1002/ardp.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
This review article offers an environmentally benign synthesis of 1,3,4-oxadiazole derivatives, with a focus on sustainable methodologies that have minimal impact on the environment. These derivatives, known for their diverse applications, have conventionally been associated with synthesis methods that utilize hazardous reagents and produce significant waste, thereby raising environmental concerns. The green synthesis of 1,3,4-oxadiazole derivatives employs renewable substrates, nontoxic catalysts, and mild reaction conditions, aiming to minimize the environmental impact. Innovative techniques such as catalyst-based, catalyst-free, electrochemical synthesis, green-solvent-mediated synthesis, grinding, microwave-mediated synthesis, and photosynthesis are implemented, providing benefits in terms of scalability, cost-effectiveness, and ease of purification. This review emphasizes the significance of sustainable methodologies in the synthesis of 1,3,4-oxadiazole and boots for continued exploration in this research domain.
Collapse
Affiliation(s)
- Drashti Shah
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Ashish Patel
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
2
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
3
|
He Q, Zhang Q, Rolka AB, Suero MG. Alkoxy Diazomethylation of Alkenes by Photoredox-Catalyzed Oxidative Radical-Polar Crossover. J Am Chem Soc 2024; 146:12294-12299. [PMID: 38663863 PMCID: PMC11082901 DOI: 10.1021/jacs.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Herein, we present the discovery and development of the first photoredox-catalyzed alkoxy diazomethylation of alkenes with hypervalent iodine reagents and alcohols. This multicomponent process represents a new disconnection approach to diazo compounds and is featured by a broad scope, mild reaction conditions, and excellent selectivity. Key to the process was the generation of diazomethyl radicals, which engaged alkenes and alcohols in an inter- and intramolecular fashion by a photoredox-catalyzed oxidative radical-polar crossover leading to unexplored β-alkoxydiazo compounds. The synthetic utility of such diazo compounds was demonstrated with a series of transformations involving C-H, N-H, and O-H insertions as well as in the construction of complex sp3-rich heterocycles.
Collapse
Affiliation(s)
- Qiyuan He
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Quan Zhang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Alessa B. Rolka
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA,
Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Xie ZY, Xuan J. Advances in heterocycle synthesis through photochemical carbene transfer reactions. Chem Commun (Camb) 2024; 60:2125-2136. [PMID: 38284428 DOI: 10.1039/d3cc06056j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Heterocyclic skeletons are commonly found in various bioactive molecules and pharmaceutical compounds, making them crucial in areas such as medicinal chemistry, materials science, and the realm of natural product synthesis. In recent years, the rapid advancements of visible light methodologies in organic synthesis have shown promising potential for the development of light-induced carbene transfer reactions. This is particularly significant as most organic molecules do not absorb visible light. Free carbene, known for its high activity, is frequently utilized for insertion reactions or cyclopropanation reactions. This review focuses on the photochemical strategy for the construction of heterocyclic skeletons, specifically highlighting the methods that employ visible light-promoted carbene transfer reactions.
Collapse
Affiliation(s)
- Zi-Yi Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
5
|
Liu L, Zhang Y, Zhao W, Wen J, Dong C, Hu C, Li J. Photoredox-Catalyzed Cascade sp 2 C-H Bond Functionalization to Construct Substituted Acridine with Diarylamine and Hypervalent Iodine(III) Reagents. Org Lett 2023; 25:592-596. [PMID: 36656299 DOI: 10.1021/acs.orglett.2c04114] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A photocatalyzed cascade double C-C formation via sp2 C-H bond activation of diarylamines with hypervalent iodine diazo reagents was developed. A variety of diarylamines and hypervalent iodine(III) reagents were tolerated well, and a range of substituted acridines with yields ranging from moderate to excellent was provided efficiently. The protocol introduces diazo groups onto diarylamines and enables subsequent late-stage assembly point functionalization with the diazonium structure, forming two new C-C bonds in a sequential fashion.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.,Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yage Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Wenyan Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jinxia Wen
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Chunping Dong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Caijuan Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jian Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China.,Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| |
Collapse
|
6
|
Tu HF, Jeandin A, Suero MG. Catalytic Synthesis of Cyclopropenium Cations with Rh-Carbynoids. J Am Chem Soc 2022; 144:16737-16743. [PMID: 36074785 PMCID: PMC9501905 DOI: 10.1021/jacs.2c07769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Herein, we report the first catalytic one-step synthesis of cyclopropenium cations (CPCs) with readily available alkynes and hypervalent iodine reagents as carbyne sources. Key to the process is the catalytic generation of a novel Rh-carbynoid that formally transfers monovalent cationic carbynes (:+C-R) to alkynes via an oxidative [2+1] cycloaddition. Our process is able to synthesize a new type of CPC substituted with an ester group that underpins the regioselective attack of a broad range of carbon and heteroatomic nucleophiles, thus providing a new platform for the synthesis of valuable cyclopropenes difficult or not possible to make by current methodologies.
Collapse
Affiliation(s)
- Hang-Fei Tu
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Aliénor Jeandin
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
7
|
Lim JH, Baek SE, Lad BS, Kim J. Synthesis of 2-Imino-1,3,4-oxadiazolines from Acylhydrazides and Isothiocyanates via Aerobic Oxidation and a DMAP-Mediated Annulation Sequence. ACS OMEGA 2022; 7:28148-28159. [PMID: 35990423 PMCID: PMC9386851 DOI: 10.1021/acsomega.2c02323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 05/27/2023]
Abstract
In this work, an efficient synthesis of 2-imino-1,3,4-oxadiazolines from acylhydrazides and isothiocyanates is described. In the presence of 4-dimethylaminopyridine (DMAP) and molecular oxygen, various 2-imino-1,3,4-oxadiazolines were produced in good to high yields. The developed method showed a broad substrate scope and was effective on the gram scale. On the basis of the mechanistic studies and previous literature, it was proposed that the mechanism consists of an aerobic oxidation of acylhydrazides facilitated by DMAP and isothiocyanates, followed by a DMAP-mediated annulation of the in situ generated acyldiazenes with isothiocyanates.
Collapse
|
8
|
Wen J, Zhao W, Gao X, Ren X, Dong C, Wang C, Liu L, Li J. Synthesis of [1,2,3]Triazolo-[1,5- a]quinoxalin-4(5 H)-ones through Photoredox-Catalyzed [3 + 2] Cyclization Reactions with Hypervalent Iodine(III) Reagents. J Org Chem 2022; 87:4415-4423. [PMID: 35234036 DOI: 10.1021/acs.joc.2c00135] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient synthesis of a variety of [1,2,3]triazolo-[1,5-a]quinoxalin-4(5H)-ones via a [3 + 2] cyclization reaction by photoredox catalysis between quinoxalinones and hypervalent iodine(III) reagents is reported. A range of quinoxalinones and hypervalent iodine(III) reagents were tolerated well. This cyclization reaction allows access to structurally diverse [1,2,3]triazolo-[1,5-a]quinoxalin-4(5H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Jinxia Wen
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Wenyan Zhao
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xu Gao
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaofang Ren
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Chunping Dong
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Cheli Wang
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Li Liu
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Jian Li
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
9
|
Li S, Zhou L. Visible Light-Promoted Radical Reactions of Diazo Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Srivastava V, Singh PK, Tivari S, Singh PP. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Org Chem Front 2022. [DOI: 10.1039/d1qo01602d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light and photoredox catalysis have emerged as a powerful and long-lasting tool for organic synthesis, demonstrating the importance of a variety of chemical bond formation methods.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Pravin K. Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Praveen P. Singh
- Department of Chemistry, United College of Engineering & Research, Naini, Prayagraj 211010, India
| |
Collapse
|
11
|
Zhao WW, Shao YC, Wang AN, Huang JL, He CY, Cui BD, Wan NW, Chen YZ, Han WY. Diazotrifluoroethyl Radical: A CF 3-Containing Building Block in [3 + 2] Cycloaddition. Org Lett 2021; 23:9256-9261. [PMID: 34802247 DOI: 10.1021/acs.orglett.1c03603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present herein a visible-light-induced [3 + 2] cycloaddition of a hypervalent iodine(III) reagent with α-ketoacids for the construction of 5-CF3-1,3,4-oxadiazoles that are of importance in medicinal chemistry. The reaction proceeds smoothly without a photocatalyst, metal, or additive under mild conditions. Different from the well-established trifluorodiazoethane (CF3CHN2), the diazotrifluoroethyl radical [CF3C(·)N2], a trifluoroethylcarbyne (CF3CĊ:) equivalent and an unusual CF3-containing building block, is involved in the present reaction system.
Collapse
Affiliation(s)
- Wen-Wen Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yong-Chao Shao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
| | - An-Ni Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Jia-Li Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|