1
|
Zeng J, Lin F, Hsu W, Wang S, Wu Y, Wang X, Cheng H, Zhu Q, Wu H, Song L. Synthesis of cerium-based flame retardant containing phosphorus and its impact on the flammability of polylactic acid. Int J Biol Macromol 2024; 271:132636. [PMID: 38795567 DOI: 10.1016/j.ijbiomac.2024.132636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
The synthesis and characterization of [Ce2(PPPA)4(OH)2]·4H2O, wherein PPPA denotes 3-(hydroxy(phenyl)phosphoryl)propanoate, were conducted. Its potential as a flame-retardant additive for poly(L-lactic acid) (PLA) in conjunction with ammonium polyphosphate (APP) was investigated. Remarkably, with just incorporation of the 1 % Ce-complex and 4 % APP, the resulting PLA composite (PLA-8) meets the V-0 standard, exhibiting an impressive limiting oxygen index (LOI) of 29.4 %. Moreover, the introduction of the Ce-complex leads to a significant extension of ignition time (TTI), a significant 24.1 % decrease in total heat release (THR) compared to pure PLA, and a notable increase in residual carbon rate from 0.3 % to 3.51 %. Although PLA-8 exhibits a minor decline of 8.7 % in tensile strength and 3.4 % in elongation at break, respectively, compared to pure PLA, there is a substantial improvement of 32.2 % in Young's modulus and 29.9 % in impact resistance. These results emphasise the potential of cerium-based phosphorus-containing flame retardants, with cerium playing a key role in enhancing the flammability characteristics of PLA. This study contributes to the development of sustainable and fire-resistant materials in polymer chemistry.
Collapse
Affiliation(s)
- Junwei Zeng
- School of Chemistry and Materials, Fujian Normal University, Fujian 350007, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fenglong Lin
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wayne Hsu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shenglong Wang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yincai Wu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinkun Wang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hongyan Cheng
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qiuyin Zhu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Huiming Wu
- Fuzhou Fusu Science and Technology Research Institute Co., LTD, Fuzhou 350002, China
| | - Lijun Song
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
2
|
Jin X, Zhang J, Zhu Y, Zhang A, Wang R, Cui M, Wang DY, Zhang X. Highly efficient metal-organic framework based intumescent poly(L-lactic acid) towards fire safety, ignition delay and UV resistance. Int J Biol Macromol 2023; 250:126127. [PMID: 37541480 DOI: 10.1016/j.ijbiomac.2023.126127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Developing multifunctional biodegradable PLA with ignition delay, high efficient fire retardancy, and UV resistance properties is a challenging task owing to its high flammability, and mutually exclusive phenomenon between the latter two properties. In this work, we report a superior efficient synergistic action combining piperazine pyrophosphate (PAPP) and a Co based metal-organic framework (ZIF-67). Results illustrated that with merely 0.06 wt% ZIF-67, intumescent PLA containing 4.96 wt% PAPP reached UL-94 V0 rating. The PLA/4.9PAPP/0.1MOF sample possessed a limiting oxygen index (LOI) value at 33 %, exhibited a 28 % reduction in peak heat release rate (pHRR) and a 67 % increase in fire propagation index (FPI). Moreover, the presence MOF delayed the ignition time of PLA by 12 s due to the highly porous structure of MOF and its chemical heat-sink performance. Insightful reaction to fire mechanism in the condensed phase via TG-FTIR and Raman revealed that a crack free protective intumescent char layer with higher graphitization degree was formed, which effectively enhanced the barrier effect and minimize the heat and fuel transfer. In addition, the UV resistance of PLA composites is enhanced, remaining at and below 5 % transmittance in the UVA and UVB areas. This work provides a green production way of multifunctional degradable materials and broadens their application fields.
Collapse
Affiliation(s)
- Xu Jin
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jing Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Yanlong Zhu
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Anying Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Rui Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Meng Cui
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain
| | - Xiuqin Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Wang Y, Piao J, Ren J, Feng T, Wang Y, Liu W, Dong H, Chen W, Jiao C, Chen X. Simultaneously improving the hydrophobic property and flame retardancy of aluminum hypophosphite using rare earth based coupling agent for epoxy composites. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yaofei Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Junxiu Piao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Jinyong Ren
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Tingting Feng
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Yaxuan Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Wei Liu
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Huixin Dong
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Wenjiao Chen
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Chuanmei Jiao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Xilei Chen
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| |
Collapse
|
4
|
Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers (Basel) 2022; 14:polym14235279. [PMID: 36501673 PMCID: PMC9740387 DOI: 10.3390/polym14235279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Polymer matrix is vulnerable to fire hazards and needs to add flame retardants to enhance its performance and make its application scenarios more extensive. At this stage, it is more necessary to add multiple flame-retardant elements and build a multi-component synergistic system. Metal organic frameworks (MOFs) have been studied for nearly three decades since their introduction. MOFs are known for their structural advantages but have only been applied to flame-retardant polymers for a relatively short period of time. In this paper, we review the development of MOFs utilized as flame retardants and analyze the flame-retardant mechanisms in the gas phase and condensed phase from the original MOF materials, modified MOF composites, and MOF-derived composites as flame retardants, respectively. The effects of carbon-based materials, phosphorus-based materials, nitrogen-based materials, and biomass on the flame-retardant properties of polymers are discussed in the context of MOFs. The construction of MOF multi-structured flame retardants is also introduced, and a variety of MOF-based flame retardants with different morphologies are shown to broaden the ideas for subsequent research.
Collapse
|
5
|
Liu X, Ma L, Sheng Y, Liu S, Wei G, Wang X. Synergistic flame‐retardant effect of modified hydrotalcite and expandable graphite for silicone rubber foam. J Appl Polym Sci 2022. [DOI: 10.1002/app.53471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Xixi Liu
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Li Ma
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Youjie Sheng
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Shangming Liu
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Gaoming Wei
- College of Energy Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Xu Wang
- College of Safety Science and Engineering China University of Mining and Technology Xuzhou China
| |
Collapse
|
6
|
Lee SH, Lee SG, Lee JS, Ma BC. Understanding the Flame Retardant Mechanism of Intumescent Flame Retardant on Improving the Fire Safety of Rigid Polyurethane Foam. Polymers (Basel) 2022; 14:polym14224904. [PMID: 36433031 PMCID: PMC9696838 DOI: 10.3390/polym14224904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Combinations of multiple inorganic fillers have emerged as viable synergistic agents for boosting the flame retardancy of intumescent flame retardant (IFR) polymer materials. However, few studies on the effect of multiple inorganic fillers on the flame retardant behavior of rigid polyurethane (RPU) foam have been carried out. In this paper, a flame retardant combination of aluminum hydroxide (ATH) and traditional flame retardants ammonium polyphosphate (APP), pentaerythritol (PER), melamine cyanurate (MC), calcium carbonate (CC), and expandable graphite (EG) was incorporated into RPU foam to investigate the synergistic effects of the combination of multiple IFR materials on the thermal stability and fire resistance of RPU foam. Scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) revealed that 8 parts per hundred polyols by weight (php) filler concentrations were compatible with RPU foam and yielded an increased amount of char residue compared to the rest of the RPU samples. The flame retardancy of multiple fillers on intumescent flame retardant RPU foam was also investigated using cone calorimeter (CCTs) and limiting oxygen index (LOI) tests, which showed that RPU/IFR1 (APP/PER/MC/EG/CC/ATH) had the best flame retardant performance, with a low peak heat release rate (PHRR) of 82.12 kW/m2, total heat release rate (THR) of 15.15 MJ/m2, and high LOI value of 36%. Furthermore, char residue analysis revealed that the use of multiple fillers contributed to the generation of more intact and homogeneous char after combustion, which led to reduced decomposition of the RPU foam and hindered heat transfer between the gas and condensed phases.
Collapse
|