1
|
Ghouri I, Demir M, Khan SA, Mansoor MA, Iqbal M. Unveiling the Potential of Protein-Based Sustainable Antibacterial Materials. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10381-6. [PMID: 39422822 DOI: 10.1007/s12602-024-10381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
The surge in bacterial growth and the escalating resistance against a multitude of antibiotic drugs have burgeoned into an alarming global threat, necessitating urgent and innovative interventions. In response to this peril, scientists have embarked on the development of advanced biocompatible antibacterial materials, aiming to counteract not only bacterial infections but also the pervasive issue of food spoilage resulting from microbial proliferation. Protein-based biopolymers and their meticulously engineered composites are at the forefront of this endeavor. Their potential in combating this severe global concern presents an approach that intersects the domains of biomedicine and environmental science. The present review article delves into the intricate extraction processes employed to derive various proteins from their natural sources, unraveling the complex biochemical pathways that underpin their antibacterial properties. Expanding on the foundational knowledge, the review also provides a comprehensive synthesis of functionalized proteins modified to enhance their antibacterial efficacy, unveiling a realm of possibilities for tailoring solutions to specific biomedical and environmental applications. The present review navigates through their antibacterial applications; from wound dressings to packaging materials with inherent antibacterial properties, the potential applications underscore the versatility and adaptability of these materials. Moreover, this comprehensive review serves as a valuable roadmap, guiding future research endeavors in reshaping the landscape of natural antibacterial materials on a global scale.
Collapse
Affiliation(s)
- Iqra Ghouri
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- Materials Institute, TUBITAK Marmara Research Center, 41470, Gebze, Turkey
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Adil Mansoor
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
2
|
Chelu M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024; 10:636. [PMID: 39451288 PMCID: PMC11508064 DOI: 10.3390/gels10100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The innovative fusion of essential oils with hydrogel engineering offers an optimistic perspective for the design and development of next-generation materials incorporating natural bioactive compounds. This review provides a comprehensive overview of the latest advances in the use of hydrogels containing essential oils for biomedical, dental, cosmetic, food, food packaging, and restoration of cultural heritage applications. Polymeric sources, methods of obtaining, cross-linking techniques, and functional properties of hydrogels are discussed. The unique characteristics of polymer hydrogels containing bioactive agents are highlighted. These include biocompatibility, nontoxicity, effective antibacterial activity, control of the sustained and prolonged release of active substances, optimal porosity, and outstanding cytocompatibility. Additionally, the specific characteristics and distinctive properties of essential oils are explored, along with their extraction and encapsulation methods. The advantages and disadvantages of these methods are also discussed. We have considered limitations due to volatility, solubility, environmental factors, and stability. The importance of loading essential oils in hydrogels, their stability, and biological activity is analyzed. This review highlights through an in-depth analysis, the recent innovations, challenges, and future prospects of hydrogels encapsulated with essential oils and their potential for multiple applications including biomedicine, dentistry, cosmetics, food, food packaging, and cultural heritage conservation.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Borges JC, de Almeida Campos LA, Kretzschmar EAM, Cavalcanti IMF. Incorporation of essential oils in polymeric films for biomedical applications. Int J Biol Macromol 2024; 269:132108. [PMID: 38710258 DOI: 10.1016/j.ijbiomac.2024.132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Natural and synthetic biodegradable polymers are widely used to obtain more sustainable films with biological, physicochemical, and mechanical properties for biomedical purposes. The incorporation of essential oils (EOs) in polymeric films can optimize the biological activities of these EOs, protect them from degradation, and serve as a prototype for new biotechnological products. This article aims to discuss updates over the last 10 years on incorporating EOs into natural and synthetic biodegradable polymer films for biomedical applications. Chitosan, alginates, cellulose, and proteins such as gelatine, silk, and zein are among the natural polymers most commonly used to prepare biodegradable films for release EOs. In addition to these, the most cited synthetic biodegradable polymers are poly(L-lactide) (PLA), poly(vinyl alcohol) (PVA), and poly(ε-caprolactone) (PCL). The EOs of clove, cinnamon, tea tree, eucalyptus, frankincense, lavender, thyme and oregano incorporated into polymeric films have been the most studied EOs in recent years in the biomedical field. Biomedical applications include antimicrobial activity against pathogenic bacteria and fungi, anticancer activity, potential for tissue engineering and regeneration with scaffolds and wound healing as dressings. Thus, this article reports on the importance of incorporating EOs into biodegradable polymer films, making these systems especially attractive for various biomedical applications.
Collapse
Affiliation(s)
- Joyce Cordeiro Borges
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | | | | | - Isabella Macário Ferro Cavalcanti
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil; Federal University of Pernambuco (UFPE), Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
4
|
Wang J, Zhao F, Huang J, Li Q, Yang Q, Ju J. Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Crit Rev Food Sci Nutr 2024; 64:6272-6297. [PMID: 36651301 DOI: 10.1080/10408398.2023.2167066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jinglin Huang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qianyu Li
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
5
|
Shlosman K, Rein DM, Shemesh R, Cohen Y. Lyophilized Emulsions of Thymol and Eugenol Essential Oils Encapsulated in Cellulose. Polymers (Basel) 2024; 16:1422. [PMID: 38794616 PMCID: PMC11125086 DOI: 10.3390/polym16101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Efforts to tap into the broad antimicrobial, insecticidal, and antioxidant activities of essential oils (EOs) are limited due to their strong odor and susceptibility to light and oxidation. Encapsulation of EOs and subsequent drying overcome these limitations and extend their applications. This study characterized freeze-dried (lyophilized) emulsions of eugenol (EU) and thymol (TY) EOs, encapsulated by chemically unmodified cellulose, a sustainable and low-cost resource. High-resolution scanning electron microscopy showed successful lyophilization. While the observed "flake-like" structure of the powders differed significantly from that of the emulsified microcapsules, useful properties were retained. Fourier transform infrared spectroscopy confirmed the presence of EOs in their corresponding powders and thermo-gravimetric analysis demonstrated high encapsulation efficiency (87-88%), improved thermal stability and resistance to evaporation, and slow EO release rates in comparison to their free forms. The lightweight and low-cost cellulose encapsulation, together with the results showing retained properties of the dried powder, enable the use of EOs in applications requiring high temperatures, such as EO incorporation into polymer films, that can be used to protect agricultural crops from microbial infections.
Collapse
Affiliation(s)
- Koranit Shlosman
- The Interdepartmental Program in Polymer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel;
- R&D and Customer Service Department Carmel Olefins Ltd., Haifa 31014, Israel;
| | - Dmitry M. Rein
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| | - Rotem Shemesh
- R&D and Customer Service Department Carmel Olefins Ltd., Haifa 31014, Israel;
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
6
|
Mendes JF, Norcino LB, Corrêa TQ, Barbosa TV, Paschoalin RT, Mattoso LHC. Obtaining poly (lactic acid) nanofibers encapsulated with peppermint essential oil as potential packaging via solution-blow-spinning. Int J Biol Macromol 2023; 230:123424. [PMID: 36708906 DOI: 10.1016/j.ijbiomac.2023.123424] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The development of active packaging based on biodegradable material and incorporating active compounds, such as essential oil, is a new technique to ensure food safety without harming the environment. In this study, nanofiber mats of poly (lactic acid)/ polyethylene glycol (PLA/PEG) blend incorporated with peppermint essential oil (PO) at different ratios (5-20 % v/w) were produced by solution-blow-spinning (SBS) for potential packaging application. Electron microscopy showed a cylindrical and interlaced morphology for PLA/PEG/PO and a significant increase in the diameter (139-192 nm) of the nanofibers by increasing PO content. All nanofibers showed high thermal stability (278-345 °C) suitable for use in the food industry. Nuclear magnetic resonance (13C NMR) spectrum confirmed PO in the nanofibers after SBS. ATR-FTIR spectral analysis supported the chemical composition of the nanofiber mats. PO addition led to obtaining hydrophobic nanofibers, enhancing the contact angle to 122° and decreasing water vapor permeability (60 % reduction compared to the PLA/PEG (3.0 g.mm.kPa-1.h-1.m-2). Although the PLA/PEG/20%PO nanofibers did not show halo formation in 24 h, they effectively extended the strawberries' shelf-life at 25 °C, evidencing PO release over time. It also reduced weight loss (2.5 % and 0.3 % weight loss after 5 days for PLA/PEG and PLA/PEG/20%PO, respectively) and increased firmness (8-12 N) for strawberries packed with the nanofiber mats. It is suggested that PLA/PEG films incorporating PO may be used as an active, environmentally friendly packaging material.
Collapse
Affiliation(s)
- Juliana Farinassi Mendes
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil.
| | - Laís Bruno Norcino
- Graduate Program in Biomaterials Engineering, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Thaila Quatrini Corrêa
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Talita Villa Barbosa
- São Carlos School of Engineering, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Rafaella T Paschoalin
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil
| | | |
Collapse
|
7
|
Beena M, Ameer JM, Kasoju N. Optically Clear Silk Fibroin Films with Tunable Properties for Potential Corneal Tissue Engineering Applications: A Process-Property-Function Relationship Study. ACS OMEGA 2022; 7:29634-29646. [PMID: 36061739 PMCID: PMC9434766 DOI: 10.1021/acsomega.2c01579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Owing to the shortage of donor corneas and issues associated with conventional corneal transplantation, corneal tissue engineering has emerged as a promising therapeutic alternative. Biocompatibility and other attractive features make silk fibroin a biomaterial of choice for corneal tissue engineering applications. The current study presents three modes of silk fibroin film fabrication by solvent casting with popular solvents, viz. aqueous (aq), formic acid (FA), and hexafluoroisopropanol (HFIP), followed by three standard modes of postfabrication annealing with water vapor, methanol vapor, and steam, and systematic characterization studies including corneal cell culture in vitro. The results indicated that silk fibroin films made from aq, FA, and HFIP solvents had surface roughness (Rq) of 1.39, 0.32, and 0.13, contact angles of 73°, 85°, and 89°, water uptake% of 58, 29, and 27%, swelling ratios of 1.58, 1.3, and 1.28, and water vapor transmission% of 39, 26, and 22%, respectively. The degradation rate was in the order of aq > HF > FA, whereas the tensile strength was in the order of aq < HF < FA. Further, the results of the annealing process indicated notable changes in morpho-topographical, physical, degradation, and tensile properties. However, the films showed no detectable changes in chemical composition and remained optically clear with >90% transmission in the visible range, irrespective of fabrication and postfabrication processing conditions. The films were noncytotoxic against L929 cells and were cytocompatible with rabbit cornea-derived SIRC cells in vitro. The study demonstrated the potential of fine-tuning various properties of silk fibroin films by varying the fabrication and postfabrication processing conditions.
Collapse
Affiliation(s)
- Maya Beena
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Jimna Mohamed Ameer
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012, Kerala, India
| |
Collapse
|
8
|
Zhang J, Lou B, Qin X, Li Y, Yuan H, Zhang L, Liu X, Zhang Y, Lu J. Using Amphiphilic Polymer Micelles as the Templates of Antisolvent Crystallization to Produce Drug Nanocrystals. ACS OMEGA 2022; 7:21000-21013. [PMID: 35755329 PMCID: PMC9219533 DOI: 10.1021/acsomega.2c01792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible and biodegradable amphiphilic polymeric micelles (PLA-CMCS-g-OA) were prepared by surface grafting of oleic acid and polylactic acid onto carboxymethyl chitosan and were used as templates for the crystallization of camptothecin. The camptothecin (CPT) nanocrystals prepared by the novel micelle-templated antisolvent crystallization (mt-ASC) method demonstrated higher crystallinity, narrower particle size distribution, and slower release characteristic than those prepared by conventional antisolvent crystallization (c-ASC) using a high initial concentration and fast addition rate. In particular, the CPT release behavior of mt-ASC products in phosphate buffer solutions presented a pH-responsive characteristic with the increasing release rate of CPT under lower pH conditions. This work confirmed that amphiphilic nanomicelle-templated crystallization was an effective method for preparing drug nanocrystals.
Collapse
Affiliation(s)
- Jianghao Zhang
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Boxuan Lou
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiaolan Qin
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yinwen Li
- Materials
Science & Engineering School, Linyi
University, Linyi 276000, China
| | - Haikuan Yuan
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lijuan Zhang
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yan Zhang
- Process
Engineering Department, Memorial University
of Newfoundland, St John’s, NL A1B 3X5, Canada
| | - Jie Lu
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|