Lee J, Park C, Fai Tsang Y, Andrew Lin KY. Towards Sustainable Production of Polybutylene Adipate Terephthalate: Non-Biological Catalytic Syntheses of Biomass-Derived Constituents.
CHEMSUSCHEM 2024:e202401070. [PMID:
38984837 DOI:
10.1002/cssc.202401070]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Renewable chemicals, which are made from renewable resources such as biomass, have attracted significant interest as substitutes for natural gas- or petroleum-derived chemicals to enhance the sustainability of the chemical and petrochemical industries. Polybutylene adipate terephthalate (PBAT), which is a copolyester of 1,4-butanediol (1,4-BDO), adipic acid (AA), and dimethyl terephthalate (DMT) or terephthalic acid (TPA), has garnered significant interest as a biodegradable polymer. This study assesses the non-biological production of PBAT monomers from biomass feedstocks via heterogeneous catalytic reactions. The biomass-based catalytic routes to each monomer are analyzed and compared to conventional routes. Although no fully commercialized catalytic processes for direct conversion of biomass into 1,4-BDO, AA, DMT, and TPA are available, emerging and promising catalytic routes have been proposed. The proposed biomass-based catalytic pathways toward 1,4-BDO, AA, DMT, and TPA are not yet fully competitive with conventional fossil fuel-based pathways mainly due to high feedstock prices and the existence of other alternatives. However, given continuous technological advances in the renewable production of PBAT monomers, bio-based PBAT should be economically viable in the near future.
Collapse