1
|
Foltz L, Avabhrath N, Lanchy JM, Levy T, Possemato A, Ariss M, Peterson B, Grimes M. Craniofacial chondrogenesis in organoids from human stem cell-derived neural crest cells. iScience 2024; 27:109585. [PMID: 38623327 PMCID: PMC11016914 DOI: 10.1016/j.isci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.
Collapse
Affiliation(s)
- Lauren Foltz
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Nagashree Avabhrath
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Majd Ariss
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Mark Grimes
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Wang X, Wu P, Fu Y, Yang R, Li C, Chen Y, He A, Chen X, Ma D, Ma J, Zhang T. The circular RNA expression profile of human auricle cartilage and the role of circCOL1A2 in isolated microtia. Cell Signal 2024; 115:111017. [PMID: 38123043 DOI: 10.1016/j.cellsig.2023.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microtia is one of the most common craniofacial birth defects worldwide, and its primary clinical manifestation is auricle deformity. Epigenetic factors are known to contribute to the etiology of microtia, yet the involvement of circular RNAs (circRNAs) in human auricle development and their association with microtia remains poorly understood. In this study, we aimed to analyze differentially expressed circRNAs and explore their functional implications in isolated microtia. By employing circRNA microarray analysis and bioinformatics approaches, we identified 340 differentially expressed circRNAs in auricle cartilage of patients with isolated microtia, comprising 152 upregulated and 188 downregulated circRNAs. A circRNA-mRNA co-expression network was constructed, followed by gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Subsequently, we selected four significantly upregulated circRNAs from the co-expression network based on their association with cartilage development and validated their expressions in 30 isolated microtia and 30 control clinical auricle cartilage samples. Among these circRNAs, circCOL1A2, the most significantly upregulated circRNA, was selected as a representative circRNA for investigating its role in isolated microtia. Overexpression of circCOL1A2 significantly inhibited chondrocyte proliferation and chondrogenic differentiation of human mesenchymal stem cells. Additionally, circCOL1A2 upregulated Dermatan Sulfate Epimerase Like (DSEL) expression by sponging miR-637 through the competing endogenous RNA (ceRNA) mechanism. Notably, the downregulation of DSEL attenuated the inhibitory effect of circCOL1A2 overexpression on cell proliferation and chondrogenic differentiation. Collectively, these findings highlight the involvement of circCOL1A2 in the pathogenesis of isolated microtia and emphasize the potential significance of dysregulated circRNAs in disease development.
Collapse
Affiliation(s)
- Xin Wang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Peixuan Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yaoyao Fu
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenlong Li
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ying Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Aijuan He
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| |
Collapse
|
3
|
Yang R, Fu Y, Li C, Chen Y, He A, Jiang X, Ma J, Zhang T. Profiling of Long Non-Coding RNAs in Auricular Cartilage of Patients with Isolated Microtia. Genet Test Mol Biomarkers 2024; 28:50-58. [PMID: 38416666 DOI: 10.1089/gtmb.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Introduction: Microtia is the second most common maxillofacial birth defect worldwide. However, the involvement of long non-coding RNAs (lncRNAs) in isolated microtia is not well understood. This study aimed at identifying lncRNAs that regulate the expression of genes associated with isolated microtia. Methods: We used our microarray data to analyze the expression pattern of lncRNA in the auricular cartilage tissues from 10 patients diagnosed with isolated microtia, alongside 15 control subjects. Five lncRNAs were chosen for validation using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: We identified 4651 differentially expressed lncRNAs in the auricular cartilage from patients with isolated microtia. By Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway (GO/KEGG) analysis, we identified 27 differentially expressed genes enriched in pathways associated with microtia. In addition, we predicted 9 differentially expressed genes as potential cis-acting targets of 12 differentially expressed lncRNAs. Our findings by qRT-PCR demonstrate significantly elevated expression levels of ZFAS1 and DAB1-AS1, whereas ADIRF-AS1, HOTAIRM1, and EPB41L4A-AS1 exhibited significantly reduced expression levels in the auricular cartilage tissues of patients with isolated microtia. Conclusions: Our study sheds light on the potential involvement of lncRNAs in microtia and provides a basis for further investigation into their functional roles and underlying mechanisms.
Collapse
Affiliation(s)
- Run Yang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yin Chen
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Jiang
- Medical Laboratory of Nantong Zhongke, Department of Bioinformatics, Nantong, Jiangsu, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Noroña DM, Chamba WD, Santamaria SR, Sosa MC, Carrera LL, Rodríguez FA, Martinez MA, Izquierdo-Condoy JS. Clinical profiling of pediatric microtia patients: A cross-sectional analysis at a leading pediatric hospital in Ecuador (2015-2022). Birth Defects Res 2024; 116:e2298. [PMID: 38277412 DOI: 10.1002/bdr2.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Microtia is a frequent congenital deformity of the pinna, often with hearing loss. This study reviews the clinical profiles of microtia pediatric patients treated at a referral hospital in Quito, Ecuador, from 2015 to 2022. METHODS A cross-sectional descriptive study was carried out based on the analysis of medical records of pediatric patients with microtia treated between January 2015 and December 2022 at the Hospital Pediátrico Baca Ortiz in Quito, Ecuador. Descriptive statistics were used, and the Chi-square test assessed associations between categorical variables. RESULTS Of the 235 patients evaluated, 59.6% were male, 83.4% lived at high altitudes (2500-3500 m), and 19.1% had a family history of microtia. Grade III microtia was diagnosed in 63.8%, predominantly on the right side. Nearly all (99.1%) had hearing loss. Other anatomical alterations were observed in 27.7%, primarily the preauricular appendage. Bone vibrator implantation was a common treatment for 24.3%. Altitude did not show a significant correlation with microtia characteristics. CONCLUSIONS Most patients had grade III microtia with associated hearing loss. Despite the high prevalence at elevated altitudes, no significant altitude-disease correlation was found. The study highlights the need for further research on microtia in regions like Ecuador.
Collapse
|
5
|
Pavone P, Pappalardo XG, Parano C, Parano E, Corsello A, Ruggieri M, Cacciaguerra G, Falsaperla R. Severe Unilateral Microtia with Aural Atresia, Hair White Patch, Stereotypes in a Young Boy with De novo 16p13.11 Deletion: Reasons for a New Genotype-Phenotype Correlation. Glob Med Genet 2023; 10:370-375. [PMID: 38053544 PMCID: PMC10695706 DOI: 10.1055/s-0043-1777362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Background Microtia is an uncommon congenital malformation ranging from mild anatomic structural abnormalities to partial or complete absence of the ear leading to hearing impairment. Congenital microtia may present as a single malformation (isolated microtia) or sometimes associated with other congenital anomalies involving various organs. Microtia has been classified in three degrees according to the complexity of the auricular malformation and to anotia referred to the total absence of the ear. Genetic role in causing auricular malformation has been widely demonstrated, and genotype-phenotype correlation has been reported in cases of syndromic microtia. Case Presentation We report here a young patient with a third degree of scale classification and aural atresia. The patient showed unspecific facial dysmorphism, speech delay, precocious teething, hair white patch, and stereotypic anomalous movements. Genetic analysis displayed a de novo 16p13.11 deletion. Conclusion Microtia with aural atresia is an uncommon and severe birth defect, which affects functional and esthetic aspects, often associated with other malformations. As traumatic this disorder may be for the parents, the microtia and aural atresia are treatable, thanks to the improving and evolving surgical techniques. Based on the genetic analysis and the clinical features observed in the present case, a genotype-phenotype correlation has been proposed.
Collapse
Affiliation(s)
- Piero Pavone
- Section of Paediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation, National Council of Research, Catania, Italy
| | - Claudia Parano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Enrico Parano
- Unit of Catania, Institute for Biomedical Research and Innovation, National Council of Research, Catania, Italy
| | - Antonio Corsello
- Neonatal Intensive Care Unit, Department of Sciences for Health Promotion, Maternal Infant Care, Internal Medicine and Medical Specialties “G. D'Alessandro,” University Hospital “P. Giaccone,” Palermo, Italy
| | - Martino Ruggieri
- Section of Paediatrics and Child Neuropsychiatry, Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Cacciaguerra
- Section of Paediatrics and Child Neuropsychiatry, Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit, AUO Policlinico “Rodolico-San Marco,” University of Catania, Catania, Italy
- Acute End Emergency Pediatric Unit, Department of General Pediatrics, AUO Policlinico “Rodolico-San Marco,” University of Catania, Catania, Italy
| |
Collapse
|
6
|
Zhang W, Lu W, Yu Q, Liu X, Jiang H. Upregulated desmin/integrin β1/MAPK axis promotes elastic cartilage regeneration with increased ECM mechanical strength. Int J Biol Sci 2023; 19:2740-2755. [PMID: 37324935 PMCID: PMC10266073 DOI: 10.7150/ijbs.83024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Elastic cartilage tissue engineering is promising for providing available scaffolds for plastic reconstructive surgery. The insufficient mechanical strength of regenerative tissue and scarce resources of reparative cells are two obstacles for the preparation of tissue-engineered elastic cartilage scaffolds. Auricular chondrocytes are important reparative cells for elastic cartilage tissue engineering, but resources are scarce. Identifying auricular chondrocytes with enhanced capability of elastic cartilage formation is conducive to reducing the damage to donor sites by decreasing the demand on native tissue isolation. Based on the biochemical and biomechanical differences in native auricular cartilage, we found that auricular chondrocytes with upregulated desmin expressed more integrin β1, forming a stronger interaction with the substrate. Meanwhile, activated MAPK pathway was found in auricular chondrocytes highly expressing desmin. When desmin was knocked down, the chondrogenesis and mechanical sensitivity of chondrocytes were both impaired, and the MAPK pathway was downregulated. Finally, auricular chondrocytes highly expressing desmin regenerated more elastic cartilage with increased ECM mechanical strength. Therefore, desmin/integrin β1/MAPK signaling can not only serve as a selection standard but also a manipulation target of auricular chondrocytes to promote elastic cartilage regeneration.
Collapse
Affiliation(s)
| | | | | | - Xia Liu
- ✉ Corresponding authors: Xia Liu, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China. E-mail: . Haiyue Jiang, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China. E-mail:
| | - Haiyue Jiang
- ✉ Corresponding authors: Xia Liu, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China. E-mail: . Haiyue Jiang, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China. E-mail:
| |
Collapse
|
7
|
Chen SJ, Zhang HS, Huang XP, Li WH, Liu Y, Fan C, Liu FY, Zhao HY, Zheng YQ. Metabolomic characterization of congenital microtia: a possible analysis for early diagnosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1330. [PMID: 36660691 PMCID: PMC9843322 DOI: 10.21037/atm-22-5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Background Although metabolic abnormalities have been deemed one of the essential risk factors for growth and development, the relationship between metabolic abnormalities and microtia is still unclear. In this study, we aimed to establish a cell model of microtia and the changes of serum metabolites in patients with microtia. Methods After constructing a cell model of microtia with low expression of BMP5, we performed integrative metabolomics analysis. For the altered metabolites, the content of glycerophosphocholine (PC), triacylglycerol (TG), and choline in the serum of 28 patients (15 patients with microtia and 13 controls) with microtia was verified by enzyme-linked immunosorbent assay (ELISA). Results Detailed metabolomic evaluation showed distinct clusters of metabolites between BMP5-low expressing cells and normal control (NC) cells. The cell model of microtia had significantly higher levels of TG, PC, glycerophosphoethanolamine (PE), sphingomyelin, sulfatide, glycerophosphoglycerol, diacylglycerol, and glycosphingolipid. The main abnormal metabolites were mainly concentrated in the glycerophospholipid metabolism pathway, and PC and choline were closely related. In the serum of patients with microtia, the contents of PC, TG, and choline were significantly increased. Conclusions The individual serum samples confirmed the different metabolites between patients with microtia and controls. In particular, we showed that a newly developed metabolic biomarker panel has a high sensitivity and specificity for separating patients with microtia from controls.
Collapse
Affiliation(s)
- Sui-Jun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua-Song Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China;,Department of Otolaryngology, Longgang ENT Hospital & Shenzhen Key Laboratory of E.N.T, Institute of ENT Shenzhen, Shenzhen, China;,Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Xue-Ping Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen-Hui Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue Liu
- The Fifth Clinical Institute, Zunyi Medical University, Zhuhai, China
| | - Cong Fan
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Fei-Yi Liu
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Hui-Ying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Yi-Qing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|