1
|
Liu X, Xu H, Li J, Liu Y, Fan H. Review of Liquid Metal Fiber Based Biosensors and Bioelectronics. BIOSENSORS 2024; 14:490. [PMID: 39451703 PMCID: PMC11506175 DOI: 10.3390/bios14100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.
Collapse
Affiliation(s)
| | | | | | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| |
Collapse
|
2
|
Liang S, Huang M, Jiang D, Chen J, Hu L, Chen J, Wang Z. 3D Printing of TPU-Liquid Metal Composite Inks for the Preparation of Flexible Sensing Electronics. ChemistryOpen 2024; 13:e202300301. [PMID: 38666528 PMCID: PMC11467734 DOI: 10.1002/open.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Indexed: 10/12/2024] Open
Abstract
Direct 3D printing of liquid metal is difficult to form and easy to destroy. In this paper, we developed a 3D printed composite material consisting of a thermoplastic polyurethane (TPU) matrix and liquid metal (LM) dispersed droplets, and introduced the method for realizing 3D printed devices with this composite material: First, the LM is added to 10~50wt %TPU at 190~200 °C through ultrasonic blending to prepare blended ink. After solid cooling, the LM-TPU composite fiber with a diameter of 600 μm was prepared by Wellzoom desktop extruder at 190 °C at an extrusion speed of 400 mm/min. It has excellent elasticity, with a tensile limit of 0.637 N/m2, and the TPU could evenly wrap LM droplets. Finally, the LM-TPU fiber is 3D printed at 240 °C by using a 3D printer, and 2D/3D flexible electronic devices with heating and conductive functions could be prepared. The microcircuit has good electrical conductivity; after adding voltage, the circuit has heat release; it could be used as heating equipment to keep warm and used in various flexible wearable electronic products.
Collapse
Affiliation(s)
- Shuting Liang
- College of Chemical and Environmental EngineeringChongqing Key Laboratory for Resource Utilization of Heavy Metal WastewaterChongqing University of Arts and SciencesChongqing402160PR China
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province InstitutionHangzhou310018China
| | - Mengjun Huang
- College of Chemical and Environmental EngineeringChongqing Key Laboratory for Resource Utilization of Heavy Metal WastewaterChongqing University of Arts and SciencesChongqing402160PR China
| | - Dabo Jiang
- College of Chemical and Environmental EngineeringChongqing Key Laboratory for Resource Utilization of Heavy Metal WastewaterChongqing University of Arts and SciencesChongqing402160PR China
| | - Jianyang Chen
- College of Chemical and Environmental EngineeringChongqing Key Laboratory for Resource Utilization of Heavy Metal WastewaterChongqing University of Arts and SciencesChongqing402160PR China
| | - Liang Hu
- Beijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
| | - Jiujia Chen
- College of Chemical and Environmental EngineeringChongqing Key Laboratory for Resource Utilization of Heavy Metal WastewaterChongqing University of Arts and SciencesChongqing402160PR China
| | - Zhezi Wang
- College of Chemical and Environmental EngineeringChongqing Key Laboratory for Resource Utilization of Heavy Metal WastewaterChongqing University of Arts and SciencesChongqing402160PR China
| |
Collapse
|
3
|
Tian H, Ma J, Li Y, Xiao X, Zhang M, Wang H, Zhu N, Hou C, Ulstrup J. Electrochemical sensing fibers for wearable health monitoring devices. Biosens Bioelectron 2024; 246:115890. [PMID: 38048721 DOI: 10.1016/j.bios.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.
Collapse
Affiliation(s)
- Hang Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Junlin Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
4
|
Liang S, Yang J, Li F, Xie S, Song N, Hu L. Recent progress in liquid metal printing and its applications. RSC Adv 2023; 13:26650-26662. [PMID: 37681047 PMCID: PMC10481125 DOI: 10.1039/d3ra04356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
This paper focuses on the latest research printing technology and broad application for flexible liquid metal (LM) materials. Through the newest template printing method, centrifugal force assisted method, pen lithography technology, and laser method, the precision of liquid metal printing on the devices was improved to 10 nm. The development of novel liquid metal inks, such as PVA-LM ink and ethanol/PDMS/LM double emulsion ink, have further enhanced the recovery, rapid printing, high conductivity, and strain resistance. At the same time, liquid metals also show promise in the application of biochemical sensors, photocatalysts, composite materials, driving machines, and electrode materials. Liquid metals have been applied to biomedical, pressure/gas, and electrochemical sensors. The sensitivity, biostability, and electrochemical performance of these LM sensors were improved rapidly. They could continue to be used in healthy respiratory, heartbeat monitoring, and dopamine detection. Meanwhile, the applications of liquid metal droplets in catalytic-assisted MoS2 deposition, catalytic growth of two-dimensional (2D) lamellar, catalytic free radical polymerization, catalytic hydrogen absorption/dehydrogenation, photo/electrocatalysis, and other fields were also summarized. Through improving liquid metal composites, magnetic, thermal, electrical, and tensile enhancement alloys, and shape memory alloys with excellent properties could also be prepared. Finally, the applications of liquid metal in micro-motors, intelligent robot feet, nanorobots, self-actuation, and electrode materials were also summarized. This paper comprehensively summarizes the practical application of liquid metals in different fields, which helps understand LMs development trends, and lays a foundation for subsequent research.
Collapse
Affiliation(s)
- Shuting Liang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province Hangzhou 310018 China
| | - Jie Yang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Fengjiao Li
- Shenzhen Automotive Research Institute, Beijing Institute of Technology Shenzhen 518118 PR China
| | - Shunbi Xie
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Na Song
- Department of Oncology, Chongqing Municipal Chinese Medicine Hospital Chongqing 400021 China
| | - Liang Hu
- Key Laboratory of Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University Beijing 100083 PR China
| |
Collapse
|
5
|
Shastri V, Majumder S, Ashok A, Roy K, Pratap R, Kumar P. Electric current-assisted manipulation of liquid metals using a stylus at micro-and nano-scales. NANOTECHNOLOGY 2022; 34:105301. [PMID: 36537737 DOI: 10.1088/1361-6528/aca76e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A novel methodology, based on wetting and electromigration, for transporting liquid metal, over long distances, at micro-and nano-scale using a stylus is reported. The mechanism is analogous to a dropper that uses 'suction and release' actions to 'collect and dispense' liquid. In our methodology, a stylus coated with a thin metal film acts like the dropper that collects liquid metal from a reservoir upon application of an electric current, holds the liquid metal via wetting while carrying the liquid metal over large distances away from the reservoir and drops it on the target location by reversing the direction of electric current. Essentially, the working principle of the technique relies on the directionality of electromigration force and adhesive force due to wetting. The working of the technique is demonstrated by using an Au-coated Si micropillar as the stylus, liquid Ga as the liquid metal to be transported, and a Kleindiek-based position micro-manipulator to traverse the stylus from the liquid reservoir to the target location. For demonstrating the potential applications, the technique is utilized for closing a micro-gap by dispensing a minuscule amount of liquid Ga and conformally coating the desired segment of the patterned thin films with liquid Ga. This study confirms the promising potential of the developed technique for reversible, controlled manipulation of liquid metal at small length scales.
Collapse
Affiliation(s)
- Vijayendra Shastri
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sukanya Majumder
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Anuj Ashok
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kaustav Roy
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rudra Pratap
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Kumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Shastri V, Talukder S, Roy K, Kumar P, Pratap R. Manipulating liquid metal flow for creating standalone structures with micro-and nano-scale features in a single step. NANOTECHNOLOGY 2022; 33:455301. [PMID: 35878592 DOI: 10.1088/1361-6528/ac83cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Standalone structures with periodic surface undulations or ripples can be spontaneously created upon flowing a liquid metal, e.g. Ga, over a metallic film, e.g. Pt, Au, etc, through a complex 'wetting-reaction'-driven process. Due to the ability of 3-dimensional patterning at the small length scale in a single step, the liquid metal 'ripple' flow is a promising non-conventional patterning technique. Herein, we examine the effect of a few process parameters, such as distance away from the liquid reservoir, size of the liquid reservoir, and the geometry, thickness, and width of substrate metal film, on the nature of the ripple flow to produce finer patterns with feature sizes of ≤ 2μm. The height and the pitch of the pattern decrease with distance from the liquid reservoir and decrease in the reservoir volume. Furthermore, a decrease in the thickness and width of the substrate film also leads to a decrease in the height and pitch of the ripples. Finally, the application of an external electric field also controls the ripple patterns. By optimizing various parameters, standalone ripple structures of Ga with the height and pitch of ≤ 500 nm are created. As potential applications, the ripple patterns with micro-and nano-scopic features are demonstrated to produce a diffraction grating and a die for micro-stamping.
Collapse
Affiliation(s)
- Vijayendra Shastri
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Talukder
- Department of Computer Science and Electrical Engineering, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Kaustav Roy
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Kumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rudra Pratap
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|