1
|
Patra B, Agarwal V, Nishiyama Y, Sinha N. Probing Spatial Proximities Between Protons of Collagen Protein in Native Bone Using 2D 1H Multiple Quantum Experiments Under Fast MAS NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025; 63:268-274. [PMID: 39743659 DOI: 10.1002/mrc.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) 1H-1H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz). This method uncovered distinct 1H-1H dipolar coupling networks involving long-chain charged residues of collagen protein, highlighting their role in maintaining the stability of the collagen triple helix. Our study opens up new avenues for 1H-detected multi-quantum-based experiments at fast MAS on native collagen-containing biological systems to explore their complex heterogeneous structural details more efficiently.
Collapse
Affiliation(s)
- Bijaylaxmi Patra
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, India
| | | | - Neeraj Sinha
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Surowiec RK, Reul ON, Chowdhury NN, Rai RK, Segvich D, Tomaschke AA, Damrath J, Jacobson AM, Allen MR, Wallace JM. Combining raloxifene and mechanical loading improves bone composition and mechanical properties in a murine model of chronic kidney disease (CKD). Bone 2024; 183:117089. [PMID: 38575047 PMCID: PMC11210703 DOI: 10.1016/j.bone.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Patients with chronic kidney disease (CKD) are at an alarming risk of fracture compared to age and sex-matched non-CKD individuals. Clinical and preclinical data highlight two key factors in CKD-induced skeletal fragility: cortical porosity and reduced matrix-level properties including bone hydration. Thus, strategies are needed to address these concerns to improve mechanical properties and ultimately lower fracture risk in CKD. We sought to evaluate the singular and combined effects of mechanical and pharmacological interventions on modulating porosity, bone hydration, and mechanical properties in CKD. METHODS Sixteen-week-old male C57BL/6J mice underwent a 10-week CKD induction period via a 0.2 % adenine-laced casein-based diet (n = 48) or remained as non-CKD littermate controls (Con, n = 48). Following disease induction (26 weeks of age), n = 7 CKD and n = 7 Con were sacrificed (baseline cohort) to confirm a steady-state CKD state was achieved prior to the initiation of treatment. At 27 weeks of age, all remaining mice underwent right tibial loading to a maximum tensile strain of 2050 μƐ 3× a week for five weeks with the contralateral limb as a non-loaded control. Half of the mice (equal number CKD and Con) received subcutaneous injections of 0.5 mg/kg raloxifene (RAL) 5× a week, and the other half remained untreated (UN). Mice were sacrificed at 31 weeks of age. Serum biochemistries were performed, and bi-lateral tibiae were assessed for microarchitecture, whole bone and tissue level mechanical properties, and composition including bone hydration. RESULTS Regardless of intervention, BUN and PTH were higher in CKD animals throughout the study. In CKD, the combined effects of loading and RAL were quantified as lower cortical porosity and improved mechanical, material, and compositional properties, including higher matrix-bound water. Loading was generally responsible for positive impacts in cortical geometry and structural mechanical properties, while RAL treatment improved some trabecular outcomes and material-level mechanical properties and was responsible for improvements in several compositional parameters. While control animals responded positively to loading, their bones were less impacted by the RAL treatment, showing no deformation, toughness, or bound water improvements which were all evident in CKD. Serum PTH levels were negatively correlated with matrix-bound water. DISCUSSION An effective treatment program to improve fracture risk in CKD ideally focuses on the cortical bone and considers both cortical porosity and matrix properties. Loading-induced bone formation and mechanical improvements were observed across groups, and in the CKD cohort, this included lower cortical porosity. This study highlights that RAL treatment superimposed on active bone formation may be ideal for reducing skeletal complications in CKD by forming new bone with enhanced matrix properties.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Olivia N Reul
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Nusaiba N Chowdhury
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Ratan K Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Dyann Segvich
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Andrew A Tomaschke
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - John Damrath
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America.
| | - Andrea M Jacobson
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America.
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| |
Collapse
|
3
|
Dwivedi N, Siddiqui MA, Srivastava S, Sinha N. 1 H- 13 C cross-polarization kinetics to probe hydration-dependent organic components of bone extracellular matrix. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:397-406. [PMID: 36946081 DOI: 10.1002/mrc.5347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Abstract
Bone is a living tissue made up of organic proteins, inorganic minerals, and water. The organic component of bone (mainly made up of Type-I collagen) provides flexibility and tensile strength. Solid-state nuclear magnetic resonance (ssNMR) is one of the few techniques that can provide atomic-level structural insights of such biomaterials in their native state. In the present article, we employed the variable contact time cross-polarization (1 H-13 C CP) kinetics experiments to study the hydration-dependent atomic-level structural changes in the bone extracellular matrix (ECM). The natural abundant 13 C CP intensity of the bone ECM is measured by varying CP contact time and best fitted to the nonclassical kinetic model. Different relaxation parameters were measured by the best-fit equation corresponding to the different hydration conditions of the bone ECM. The associated changes in the measured parameters due to varying levels of hydration observed at different sites of collagen protein have provided its structural arrangements and interaction with water molecules in bone ECM. Overall, the present study reveals a better understanding of the kinetics of the organic part inside the bone ECM that will help in comprehending the disease-associated pathways.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Mohd Adnan Siddiqui
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| | - Seema Srivastava
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|