1
|
Rivero-Barbarroja G, Carmen Padilla-Pérez M, Maisonneuve S, Isabel García-Moreno M, Tiet B, Vocadlo DJ, Xie J, García Fernández JM, Ortiz Mellet C. sp 2-Iminosugar azobenzene O-glycosides: Light-sensitive glycosidase inhibitors with unprecedented tunability and switching factors. Bioorg Chem 2024; 150:107555. [PMID: 38885548 DOI: 10.1016/j.bioorg.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and β-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human β-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and β-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - M Carmen Padilla-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Ben Tiet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Juan Xie
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain.
| |
Collapse
|
2
|
González-Cuesta M, Lai ACY, Chi PY, Hsu IL, Liu NT, Wu KC, García Fernández JM, Chang YJ, Ortiz Mellet C. Serine-/Cysteine-Based sp 2-Iminoglycolipids as Novel TLR4 Agonists: Evaluation of Their Adjuvancy and Immunotherapeutic Properties in a Murine Model of Asthma. J Med Chem 2023; 66:4768-4783. [PMID: 36958376 PMCID: PMC10108363 DOI: 10.1021/acs.jmedchem.2c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Glycolipids with TLR4 agonistic properties can serve either as therapeutic agents or as vaccine adjuvants by stimulating the development of proinflammatory responses. Translating them to the clinical setting is hampered by synthetic difficulties, the lack of stability in biological media, and/or a suboptimal profile of balanced immune mediator secretion. Here, we show that replacement of the sugar fragment by an sp2-iminosugar moiety in a prototypic TLR4 agonist, CCL-34, yields iminoglycolipid analogues that retain or improve their biological activity in vitro and in vivo and can be accessed through scalable protocols with total stereoselectivity. Their adjuvant potential is manifested in their ability to induce the secretion of proinflammatory cytokines, prime the maturation of dendritic cells, and promote the proliferation of CD8+ T cells, pertaining to a Th1-biased profile. Additionally, their therapeutic potential for the treatment of asthma, a Th2-dominated inflammatory pathology, has been confirmed in an ovalbumin-induced airway hyperreactivity mouse model.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville E-41012, Spain
| | - Alan Chuan-Ying Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - I-Ling Hsu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Nien-Tzu Liu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ko-Chien Wu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, Américo Vespucio 49, Sevilla E-41092, Spain
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville E-41012, Spain
| |
Collapse
|