1
|
Ansari MA, Alomary MN. Bioinspired ferromagnetic NiFe 2O 4 nanoparticles: Eradication of fungal and drug-resistant bacterial pathogens and their established biofilm. Microb Pathog 2024; 193:106729. [PMID: 38851363 DOI: 10.1016/j.micpath.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Nickel ferrite nanoparticles (NiFe2O4 NPs) were synthesized using the medicinally important plant Aloe vera leaf extract, and their structural, morphological, and magnetic properties were characterized by x-ray diffraction (XRD), fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and vibrating sample magnetometer (VSM). The synthesized NPs were soft ferromagnetic and spinel in nature, with an average particle size of 22.2 nm. To the best of our understanding, this is the first comprehensive investigation into the antibacterial, anticandidal, antibiofilm, and antihyphal properties of NiFe2O4 NPs against C. albicans as well as drug-resistant gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and gram-negative multidrug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa) bacteria. NiFe2O4 NPs showed potent antimicrobial activity (MIC 1.6-2 mg/mL) against the test pathogens. NiFe2O4 NPs at 0.5 mg/mL suppressed biofilm formation by 49.5-53.1 % in test pathogens. The study found that the NPs not only prevent the formation of biofilm, but also eliminate existing mature biofilms by 50.5-75.79 % at 0.5 mg/mL, which was further validated by SEM. SEM examination revealed a reduction in the number of cells that form biofilms and adhere to the surface. Additionally, it considerably impeded the colonization and aggregation of the biofilm strains on the glass surface. Light microscopic examination demonstrated that NPs effectively prevent the expansion of hyphae, filaments, and yeast-to-hyphae transformation in C. albicans, resulting in a substantial decrease in their ability to cause infection. Moreover, SEM images of the treated cells exhibited the presence of wrinkles, deformities, and impaired cell walls, which suggests an alteration and instability of the membrane. This study demonstrated the efficacy of the greenly manufactured NPs in suppressing the proliferation of candida, drug-resistant bacteria, and their preexisting biofilms, as well as yeast-to-hyphae transformation. Therefore, these NPs with broad spectrum applications could be utilized in health settings to mitigate biofilm-related health conditions caused by pathogenic microbial strains.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia.
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| |
Collapse
|
2
|
Kanth Kadiyala N, Mandal BK, Kumar Reddy LV, Barnes CHW, De Los Santos Valladares L, Maddinedi SB, Sen D. Biofabricated Palladium Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite Using the Punica granatum (Pomegranate) Peel Extract: Investigation of Potent In Vivo Hepatoprotective Activity against Acetaminophen-Induced Liver Injury in Wistar Albino Rats. ACS OMEGA 2023; 8:24524-24543. [PMID: 37457483 PMCID: PMC10339435 DOI: 10.1021/acsomega.3c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Acute acetaminophen (APAP) toxicity is a predominant clinical problem, which causes serious liver injury in both humans and experimental animals. This study presents the histological and biochemical factor and antioxidant enzyme level changes induced by an acute acetaminophen overdose in Wistar albino rat livers to elucidate the effective hepatoprotective potential of biofabricated palladium nanoparticle-decorated reduced graphene oxide nanocomposites (rGO/PdNPs-NC) compared to silymarin. After detailed characterization of the hepatoprotective potential of the synthesized rGO/PdNPs-NC, the rats were divided into eight groups (n = 6): control group (normal saline, 1 mL/kg b.w.), silymarin, Punica granatum (pomegranate) peel extract, PdNPs, reduced graphene oxide (rGO-PG), and reduced graphene oxide palladium nanocomposites (rGO/PdNPs-NC, low and high doses) for 7 successive days. The acetaminophen (APAP)-treated group was administered a single dose of acetaminophen (2 g/kg b.w.) on the 8th day. The histopathological results showed that the acetaminophen overdose group exhibited massive intrahepatic hemorrhagic necrosis around the centrilobular region with hepatocytes with vacuolization and swollen cytoplasm found in the liver architecture. This hepatopotential was further assessed by various biochemical parameters such as SGOT, SGPT, ALB, ALP, LDH, direct bilirubin, total bilirubin, and total protein. Also, the antioxidant parameters such as SOD, CAT, MDA, GSH, GRD, and GST were assayed. Rats of groups 7 and 8 showed a significant decrease in SGOT, SGPT, ALP, LDH, direct bilirubin, and total bilirubin (p < 0.001), while a significant increase in the final total protein and ALB as compared to group 2 rats (p < 0.001) was observed. The antioxidant parameters exhibited that rats of groups 7 and 8 showed a significant (p < 0.001) increase in the level of SOD, CAT, GSH, GRD, and GST without affecting the MDA as compared to group 2 rats. Also, the hepatoprotective potential of rGO/PdNPs-NC (low and high doses) was comparable to that of the standard reference drug silymarin. The present study reveals that the rGO/PdNPs-NC possesses significant hepatoprotective activity and acts as an effective and promising curative agent against acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nalinee Kanth Kadiyala
- Trace
Elements Speciation Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - Badal Kumar Mandal
- Trace
Elements Speciation Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - L. Vinod Kumar Reddy
- Cellular
and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular
and Molecular Theranostics, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - Crispin H. W. Barnes
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Luis De Los Santos Valladares
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Laboratorio
de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149 Lima, Peru
| | - Sireesh Babu Maddinedi
- Trace
Elements Speciation Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - Dwaipayan Sen
- Cellular
and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular
and Molecular Theranostics, Vellore Institute
of Technology (VIT), Vellore 632014, India
| |
Collapse
|
3
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:7839-7867. [PMID: 37200572 PMCID: PMC10166465 DOI: 10.1007/s10853-023-08534-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Graphene-based materials have undergone substantial investigation in recent years owing to their wide array of physicochemical characteristics. Employment of these materials in the current state, where infectious illnesses caused by microbes have severely damaged human life, has found widespread application in combating fatal infectious diseases. These materials interact with the physicochemical characteristics of the microbial cell and alter or damage them. The current review is dedicated to molecular mechanisms underlying the antimicrobial property of graphene-based materials. Various physical and chemical mechanisms leading to cell membrane stress, mechanical wrapping, photo-thermal ablation as well as oxidative stress exerting antimicrobial effect have also been thoroughly discussed. Furthermore, an overview of the interactions of these materials with membrane lipids, proteins, and nucleic acids has been provided. A thorough understanding of discussed mechanisms and interactions is essential to develop extremely effective antimicrobial nanomaterial for application as an antimicrobial agent. Graphical abstract
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
4
|
Preparation of graphene-based nanocomposites with spinel ferrite nanoparticles: Their cytotoxic levels in different human cell lines and molecular docking studies. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Bhatt S, Punetha VD, Pathak R, Punetha M. Graphene in nanomedicine: A review on nano-bio factors and antibacterial activity. Colloids Surf B Biointerfaces 2023; 226:113323. [PMID: 37116377 DOI: 10.1016/j.colsurfb.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Graphene-based nanomaterials possess potent antibacterial activity and have engrossed immense interest among researchers as an active armour against pathogenic microbes. A comprehensive perception of the antibacterial activity of these nanomaterials is critical to the fabrication of highly effective antimicrobial nanomaterials, which results in highly efficient and enhanced activity. These materials owing to their antimicrobial activity are utilized as nanomedicine against various pathogenic microbes. The present article reviews the antimicrobial activity of graphene and its analogs such as graphene oxide, reduced graphene oxide as well as metal, metal oxide and polymeric composites. The review draws emphasis on the effect of various nano-bio factors on the antibacterial capability. It also provides an insight into the antibacterial properties of these materials along with a brief discussion on the discrepancies in their activities as evidenced by the scientific communities. In this way, the review is expected to shed light on future research and development in graphene-based nanomedicine.
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India.
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| |
Collapse
|
6
|
Tien VM, Ong VH, Pham TN, Quang Hoa N, Nguyen TL, Thang PD, Khanh Vinh L, Trinh PTN, Thanh DTN, Tung LM, Le AT. A molybdenum disulfide/nickel ferrite-modified voltammetric sensing platform for ultra-sensitive determination of clenbuterol under the presence of an external magnetic field †. RSC Adv 2023; 13:10577-10591. [PMID: 37021107 PMCID: PMC10069232 DOI: 10.1039/d3ra01136d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The electrochemical behavior and sensing performance of an electrode modified with NiFe2O4 (NFO), MoS2, and MoS2–NFO were thoroughly investigated using CV, EIS, DPV, and CA measurements, respectively. MoS2–NFO/SPE provided a higher sensing performance towards the detection of clenbuterol (CLB) than other proposed electrodes. After optimization of pH and accumulation time, the current response recorded at MoS2–NFO/SPE linearly increased with an increase of CLB concentration in the range from 1 to 50 μM, corresponding to a LOD of 0.471 μM. In the presence of an external magnetic field, there were positive impacts not only on mass transfer, ionic/charge diffusion, and absorption capacity but also on the electrocatalytic ability for redox reactions of CLB. As a result, the linear range was widened to 0.5–50 μM and the LOD value was about 0.161 μM. Furthermore, stability, repeatability, and selectivity were assessed, emphasizing their high practical applicability. The electrochemical behavior and sensing performance of an electrode modified with NiFe2O4 (NFO), MoS2, and MoS2–NFO were thoroughly investigated using CV, EIS, DPV, and CA measurements, respectively.![]()
Collapse
Affiliation(s)
- Van Manh Tien
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
| | - Van Hoang Ong
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
- University of Transport TechnologyTrieu Khuc, Thanh Xuan DistrictHanoiVietnam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
| | - Nguyen Quang Hoa
- Faculty of Physics, VNU University of Science, Vietnam National University, Hanoi334 Nguyen Trai, Thanh XuanHanoiVietnam
| | - Thi Lan Nguyen
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST)01 Dai Co Viet RoadHanoiVietnam
| | - Pham Duc Thang
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
- Faculty of Materials Science and Engineering, Phenikaa UniversityHanoi 12116Vietnam
| | - Le Khanh Vinh
- Institute of Physics at Ho Chi Minh City, Vietnam Academy of Science and Technology (VAST)Ho Chi Minh 70000Vietnam
| | - Pham Thi Nhat Trinh
- Department of Education and Basic Science, Tien Giang UniversityMy Tho CityTien Giang ProvinceVietnam
| | - Doan Thi Ngoc Thanh
- Department of Agriculture and Food Technology, Tien Giang UniversityMy Tho CityTien Giang ProvinceVietnam
| | - Le Minh Tung
- Department of Physics, Tien Giang UniversityMy Tho CityTien Giang ProvinceVietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
- Faculty of Materials Science and Engineering, Phenikaa UniversityHanoi 12116Vietnam
| |
Collapse
|