1
|
Emmanuel M. Unveiling the revolutionary role of nanoparticles in the oil and gas field: Unleashing new avenues for enhanced efficiency and productivity. Heliyon 2024; 10:e33957. [PMID: 39055810 PMCID: PMC11269882 DOI: 10.1016/j.heliyon.2024.e33957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Prominent oil corporations are currently engaged in a thorough examination of the potential implementation of nanoparticles within the oil and gas sector. This is evidenced by the substantial financial investments made towards research and development, which serves as a testament to the significant consideration given to nanoparticles. Indeed, nanoparticles has garnered increasing attention and innovative applications across various industries, including but not limited to food, biomedicine, electronics, and materials. In recent years, the oil and gas industry has conducted extensive research on the utilization of nanoparticles for diverse purposes, such as well stimulation, cementing, wettability, drilling fluids, and enhanced oil recovery. To explore the manifold uses of nanoparticles in the oil and gas sector, a comprehensive literature review was conducted. Reviewing several published study data leads to the conclusion that nanoparticles can effectively increase oil recovery by 10 %-15 % of the initial oil in place while tertiary oil recovery gives 20-30 % extra initial oil in place. Besides, it has been noted that the properties of the reservoir rock influence the choice of the right nanoparticle for oil recovery. The present work examines the utilization of nanoparticles in the oil and gas sector, providing a comprehensive analysis of their applications, advantages, and challenges. The article explores various applications of nanoparticles in the industry, including enhanced oil recovery, drilling fluids, wellbore strengthening, and reservoir characterization. By delving into these applications, the article offers a thorough understanding of how nanoparticles are employed in different processes within the sector. This analysis may prove highly advantageous for future studies and applications in the oil and gas sector.
Collapse
Affiliation(s)
- Marwa Emmanuel
- University of Dodoma, College of Natural and Mathematical Sciences, Chemistry Department, Dodoma, Tanzania
| |
Collapse
|
2
|
Zhang Z, Shen C, Zhang P, Xu S, Kong L, Liang X, Li C, Qiu X, Huang J, Cui X. Fundamental, mechanism and development of hydration lubrication: From bio-inspiration to artificial manufacturing. Adv Colloid Interface Sci 2024; 327:103145. [PMID: 38615561 DOI: 10.1016/j.cis.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Friction and lubrication are ubiquitous in all kinds of movements and play a vital role in the smooth operation of production machinery. Water is indispensable both in the lubrication systems of natural organisms and in hydration lubrication systems. There exists a high degree of similarity between these systems, which has driven the development of hydration lubrication from biomimetic to artificial manufacturing. In particular, significant advancements have been made in the understanding of the mechanisms of hydration lubrication over the past 30 years. This enhanced understanding has further stimulated the exploration of biomimetic inspiration from natural hydration lubrication systems, to develop novel artificial hydration lubrication systems that are cost-effective, easily transportable, and possess excellent capability. This review summarizes the recent experimental and theoretical advances in the understanding of hydration-lubrication processes. The entire paper is divided into three parts. Firstly, surface interactions relevant to hydration lubrication are discussed, encompassing topics such as hydrogen bonding, hydration layer, electric double layer force, hydration force, and Stribeck curve. The second part begins with an introduction to articular cartilage in biomaterial lubrication, discussing its compositional structure and lubrication mechanisms. Subsequently, three major categories of bio-inspired artificial manufacturing lubricating material systems are presented, including hydrogels, polymer brushes (e.g., neutral, positive, negative and zwitterionic brushes), hydration lubricant additives (e.g., nano-particles, polymers, ionic liquids), and their related lubrication mechanism is also described. Finally, the challenges and perspectives for hydration lubrication research and materials development are presented.
Collapse
Affiliation(s)
- Zekai Zhang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Chaojie Shen
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Peipei Zhang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Shulei Xu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Lingchao Kong
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiubing Liang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chengcheng Li
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiaoyong Qiu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China.
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China.
| |
Collapse
|
3
|
Kumar A, Kumar V, Joshi YM, Singh MK. Tribological and Rheological Study of Thixotropic Gels of 2D Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7310-7327. [PMID: 38426447 DOI: 10.1021/acs.langmuir.3c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A thixotropic colloidal gel constituting an aqueous dispersion of synthetic clay Laponite with varying concentrations of salt has been studied for its rheological and tribological performance as a lubricant. We observed that the incorporation of NaCl induces notable enhancements in the colloidal gel's relaxation time, elastic modulus, and yield stress. Although an increase in NaCl concentration decreases the material's relaxation time dependence on waiting time (tw), overall, the strength of its thixotropic character has been observed to increase with an increase in salt concentration. The analysis of friction and wear indicated that the utilization of a thixotropic colloidal gel of Laponite with a higher concentration of NaCl resulted in progressively greater reductions in both the coefficient of friction and specific wear rates under various load-speed conditions. Severe abrasive wear on disc surface under dry test, gradually mitigated upon the introduction of these lubricants. Two simultaneous lubricating mechanisms, first, the smooth sliding of the friction pair, facilitated by the alignment of Laponite particles in the direction of shear forces, and second, the stable structure of Laponite, coupled with the addition of NaCl, enabling continuous replenishment of the wear track with lubricant, are attributed to lubrication effectiveness.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Manjesh Kumar Singh
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
4
|
Ahmed A, Pervaiz E, Abdullah U, Noor T. Optimization of Water Based Drilling Fluid Properties with the SiO 2/g-C 3N 4 Hybrid. ACS OMEGA 2024; 9:15052-15064. [PMID: 38585093 PMCID: PMC10993251 DOI: 10.1021/acsomega.3c08766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
Drilling fluids are an essential component of drilling operations in the oil and gas industry. Nanotechnology is being used to develop advanced drilling fluid additives. This study looked at the viability of synthesizing SiO2/g-C3N4 hybrid extending the Stober process followed by its addition in different concentrations to water-based drilling fluids and studying impact on the rheological and fluid loss properties of the fluids. The synthesized hybrid was analyzed using XRD, SEM, TGA, and FTIR. Subsequently, it was used to develop the water-based drilling mud formulations and subjected to measurements in accordance with API standard practices. The studies were carried out at various SiO2/g-C3N4 nanoparticle concentrations under before hot rolling (BHR) and after hot rolling (AHR) conditions. The outcomes demonstrated that the rheological and fluid loss properties were enhanced by the addition of SiO2/g-C3N4 nanoparticles, as it worked in synergy with other additives. Additionally, it was discovered that the nanoparticles improved the drilling fluid thermal stability. The experimental findings indicate a significant influence of SiO2/g-C3N4 nanoparticles on base fluid properties including rheology and fluid loss as the most remarkable, especially at higher temperatures. The significant improvements in yield point and 10 s gel strength were 55 and 42.8% under BHR and 216 and 140% under AHR conditions, respectively. Permeability plugging test (PPT) fluid loss was reduced by 69.6 and 87.2% under BHR and AHR conditions, respectively, when 0.5 lb/bbl nanoparticles were used in formulations. As a result, SiO2/g-C3N4 nanomaterial has the potential to be used as drilling fluid additive in water-based drilling fluids.
Collapse
Affiliation(s)
- Anwar Ahmed
- Department of Chemical Engineering,
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Erum Pervaiz
- Department of Chemical Engineering,
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Uzair Abdullah
- Department of Chemical Engineering,
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | | |
Collapse
|
5
|
Mahmoud A, Gajbhiye R, Elkatatny S. Evaluating the Effect of Claytone-EM on the Performance of Oil-Based Drilling Fluids. ACS OMEGA 2024; 9:12866-12880. [PMID: 38524495 PMCID: PMC10956349 DOI: 10.1021/acsomega.3c08967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
This study provides a detailed characterization and evaluation of Claytone-EM as a rheological additive to enhance the performance of oil-based drilling fluids (OBDFs) under high-pressure, high-temperature (HPHT) conditions. It also offers a comparative evaluation of the effectiveness of Claytone-EM with an existing organoclay, analyzing their mineral and chemical compositions, morphologies, and particle sizes. A series of experiments are performed to evaluate Claytone-EM's influence on crucial drilling mud properties, such as mud density, electrical stability, sagging tendency, rheology, viscoelastic properties, and filtration properties, to formulate a stable and high-performing OBDF. Results indicated that Claytone-EM had no significant impact on mud density but remarkably enhanced emulsion stability. Claytone-EM effectively mitigated sagging issues under both static and dynamic conditions, leading to improvements in the plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and YP/PV ratio. The PV, YP, AV, and YP/PV ratios were improved by 11, 85, 28, and 66% increments, respectively, compared with those of the drilling fluid formulated with MC-TONE. The addition of Claytone-EM resulted in enhancing gel strength and improving the filtration properties of the drilling fluid. The filtration volume was reduced by 2% from 5.0 to 4.9 cm3, and the filter cake thickness had a 13% reduction from 2.60 to 2.26 mm. These findings highlight Claytone-EM as a valuable additive for enhancing OBDF performance, particularly under challenging HPHT conditions. Its ability to provide emulsion stability, reduce static and dynamic sag, and control filtration holds the potential to enhance drilling operations, minimize downtime, and bolster wellbore stability. This study acknowledges certain limitations, including its temperature range, which could benefit from exploration at extreme temperatures. Additionally, the absence of flow experiments limits a comprehensive understanding of sag effects, and further research and field-scale evaluations are recommended to validate and optimize the application of Claytone-EM in OBDFs.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Mahmoud A, Gajbhiye R, Elkatatny S. Investigating the efficacy of novel organoclay as a rheological additive for enhancing the performance of oil-based drilling fluids. Sci Rep 2024; 14:5323. [PMID: 38438428 PMCID: PMC10912425 DOI: 10.1038/s41598-024-55246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Oil-based drilling fluids (OBDFs) are extensively used in the drilling industry due to their superior performance in challenging drilling conditions. These fluids control wellbore stability, lubricate the drill bit, and transport drill cuttings to the surface. One important component of oil-based drilling fluids is the viscosifier, which provides rheological properties to enhance drilling operations. This study evaluates the effectiveness of Claytone-IMG 400, a novel rheological agent, in enhancing the performance of OBDFs under high-pressure and high-temperature (HPHT) conditions. A comparative analysis was conducted with a pre-existing organoclay (OC) to assess the improvements achieved by Claytone-IMG 400. The OCs were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and particle size distribution (PSD) to identify their mineral and chemical compositions, morphologies, and particle sizes. The drilling fluid density, electrical stability, sagging tendency, rheological properties, viscoelastic properties, and filtration properties were studied to formulate a stable and high-performance drilling fluid. The results confirmed that the novel OC does not affect the drilling fluid density but enhances the emulsion stability with a 9% increment compared with the drilling fluid formulated with MC-TONE. The sagging experiments showed that Claytone-IMG 400 prevented the sagging issues in both static and dynamic conditions. Also, Claytone-IMG 400 improved the plastic viscosity (PV), yield point (YP), and apparent viscosity (AV). The PV, YP, and AV were improved by 30%, 38%, and 33% increments respectively compared with the drilling fluid formulated with MC-TONE. The YP/PV ratio increased with a 6% increment from 1.12 to 1.19. Moreover, the gel strength (GS) was significantly increased, and the filtration properties were enhanced. The filtration volume was reduced by 10% from 5.0 to 4.5 cm3, and the filter cake thickness had a 37.5% reduction from 2.60 to 1.89 mm. The novelty of this study is highlighted by the introduction and evaluation of Claytone-IMG 400 as a new rheological additive for safe, efficient, and cost-effective drilling operations. The results indicate that Claytone-IMG 400 significantly improves the stability and performance of OBDFs, thereby reducing wellbore instability and drilling-related problems.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
7
|
Mahmoud A, Gajbhiye R, Elkatatny S. Application of Organoclays in Oil-Based Drilling Fluids: A Review. ACS OMEGA 2023; 8:29847-29858. [PMID: 37636975 PMCID: PMC10448693 DOI: 10.1021/acsomega.2c07679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Organoclays (OCs), formed by surface modification of clay minerals using organic compounds, are typical additives for providing rheology for oil-based drilling fluids (OBDFs). There are different studies on the effect of OCs on the rheological properties of oil-based systems under high-pressure, high-temperature (HPHT) conditions, but finding new OCs as rheology control agents is attractive for drilling fluid engineers. This work reviews different OCs used in OBDFs, namely, organo-montmorillonite (OMMT), organo-sepiolite (OSEP), and organo-palygorskite (OPAL). Furthermore, the structure of OCs in OBDFs, their rheological properties, and the thermal stability of OCs were investigated. Besides, the role of fibrous and layered OCs in enhancing the rheological properties of OBDFs is illustrated. Finally, the synergistic use of different OCs to enhance the thermal stability and rheological properties of the OBDFs is presented. The study highlights research gaps and recommendations for research approaches and potential areas that need further investigation. The application of OCs in OBDFs is a wide field and has huge potential to be developed. The use of OCs in OBDFs will promote development in the oil and gas industry.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
8
|
Xuan Y, Zhao L, Li D, Pang S, An Y. Recent advances in the applications of graphene materials for the oil and gas industry. RSC Adv 2023; 13:23169-23180. [PMID: 37533778 PMCID: PMC10391325 DOI: 10.1039/d3ra02781c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Graphene is a material formed with carbon atoms connected by sp2 hybridization. It is extremely strong and very ductile, and is superhydrophobic and superlipophilic. It has important application prospects in materials science, micro and nano processing, energy, aerospace and biomedicine. Graphene also has some applications in the petroleum industry. As nanoscale materials, graphene-based materials can plug nano-pores and prevent water intrusion into clay minerals during the drilling process, they are suitable for sliding between layers and can be used as lubricants due to the two-dimensional structure. The adsorption properties of graphene-based materials allow them to improve the treatment rate when treating oily wastewater. This paper compiles recent advances in the application of graphene and its derivatives in oilfield extraction, including improving drilling fluid performance, enhanced oil recovery and oily wastewater treatment. We compare the performance advantages of graphene-based materials over other additives, and summarize the mechanism of action of graphene-based materials. The shortcomings of current research are identified and future research and improvement directions are envisaged.
Collapse
Affiliation(s)
- Yang Xuan
- Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Development, Sinopec Research Institute of Petroleum Engineering Changping District Beijing 100101 China
| | - Luo Zhao
- School of Engineering and Technology, China University of Geosciences (Beijing) Haidian District Beijing 100083 China
| | - Daqi Li
- Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Development, Sinopec Research Institute of Petroleum Engineering Changping District Beijing 100101 China
| | - Shaocong Pang
- School of Engineering and Technology, China University of Geosciences (Beijing) Haidian District Beijing 100083 China
- Zhengzhou Institute, China University of Geosciences (Beijing) Ximei Building, High-tech Industrial Development Zone Zhengzhou City Henan Province 450001 China
| | - Yuxiu An
- School of Engineering and Technology, China University of Geosciences (Beijing) Haidian District Beijing 100083 China
| |
Collapse
|