1
|
Praipipat P, Ngamsurach P, Khamenthong Y, Himlee N. The high adsorption performance of banana (Musa ABB Cv. Kluai 'Namwa') beaded materials modified with zinc and magnesium oxides for cadmium removal. Sci Rep 2024; 14:24082. [PMID: 39406887 PMCID: PMC11480489 DOI: 10.1038/s41598-024-74634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Wastewater contaminated with cadmium is a concern because of its toxicity, persistence, and bioaccumulation to the environment, ecosystem, and human health, so it is required to remove cadmium(II) ions before releasing them to receiving water. Banana powder beads (BPB), banana powder doped ZnO beads (BPZB), banana powder doped MgO beads (BPMB), and banana powder doped ZnO + MgO beads (BPZMB) were synthesized as the novel cadmium adsorbents, and their characterizations, cadmium adsorption performances, cadmium adsorption patterns and mechanisms, thermodynamic study, and reusability were investigated. BPMB had the highest specific surface area of 16.60 m2/g and the smallest pore size of 1.69 nm than other materials. BPB was an amorphous structure, whereas BPZB, BPMB, and BPZMB were crystalline structures presenting their specific metal oxide peaks of ZnO or MgO. They were coarse surfaces and had a spherical shape consisting of C, O, Ca, Cl, and Na. Their main functional groups were O-H, C-H, C=O, C-O, and N-H. The points of zero charge of BPB, BPZB, BPMB, and BPZMB were 5.37, 6.75, 9.87, and 9.43. The cadmium removal efficiencies of BPB, BPZB, BPMB, and BPZMB were 89.18%, 96.62%, 99.59%, and 97.85%, and their qm values were 90.09, 232.56, 454.55, and 303.03 mg/g, respectively. Thus, the metal oxide helped to improve material efficiency, especially MgO. The Freundlich and pseudo-second-order kinetic models were good fit models for describing their adsorption patterns and mechanisms. The increasing temperature affected to decrease their cadmium adsorptions. They could be reused in more than 3 cycles of more than 73% of cadmium adsorption. The electrostatic interaction played an important role in describing their cadmium adsorptions. Therefore, BPBM was a good cadmium adsorbent for application in industrial wastewater treatment since it had a higher performance of cadmium adsorption than other materials.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Pimploy Ngamsurach
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yada Khamenthong
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Niraya Himlee
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
2
|
Praipipat P, Ngamsurach P, Srirat P, Chaiphumee P. Engineered biosorbents of pomelo (Citrus maxima (Burm.f.) Merr) peels modified with zinc oxide and titanium dioxide for methylene blue dye sorption. Sci Rep 2024; 14:5763. [PMID: 38459253 PMCID: PMC10923827 DOI: 10.1038/s41598-024-56499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/07/2024] [Indexed: 03/10/2024] Open
Abstract
The pomelo-doped zinc oxide beads (PZB), pomelo-doped titanium dioxide beads (PTB), and pomelo-doped zinc oxide and titanium dioxide beads (PZTB) were synthesized for sorbing methylene blue (MB) dye. Their characterizations were explored by X-Ray Diffractometer (XRD), Field Emission Scanning Electron Microscopy and Focus Ion Beam (FESEM-FIB), Energy Dispersive X-Ray Spectrometer (EDX), and Fourier Transform Infrared Spectroscopy (FT-IR). In addition, their sorbent efficiencies for sorbing MB dye were investigated through batch experiments, sorbent reusability studies, sorption isotherms, kinetics, and thermodynamic studies. They were crystalline phases presenting the specific peaks of zinc oxide (ZnO) or titanium dioxide (TiO2). Their surfaces had lamella structures with coarse surfaces, and they also found specific structures of ZnO or TiO2 on the surfaces. Zn-O or Ti-O-Ti was also detected in PZB or PTB or, PZTB depending upon metal oxide types added into pomelo beaded sorbents. For batch experiments, they could adsorb MB dye of more than 86%, and PZTB showed the highest MB dye removal efficiency. In addition, they could be reused for more than three cycles with high MB dye sorptions of more than 72%. They corresponded to Freundlich and pseudo-second-order kinetic models. Moreover, the increasing temperature affected their decreasing MB dye sorptions which were exothermic processes.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Pimploy Ngamsurach
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pratchayaporn Srirat
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Punjaporn Chaiphumee
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
3
|
Praipipat P, Ngamsurach P, Libsittikul N, Kaewpetch C, Butdeesak P, Nachaiperm W. Cationic oxides and dioxides of modified sugarcane bagasse beads with applications as low-cost sorbents for direct red 28 dye. Sci Rep 2024; 14:1278. [PMID: 38218972 PMCID: PMC10787780 DOI: 10.1038/s41598-024-51934-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 01/15/2024] Open
Abstract
The direct red 28 (DR28) dye contamination in wastewater blocks the transmission of light into the water body resulting in the inability to photosynthesize by aquatic life. In addition, it is difficult to break down and persist in the environment, and it is also harmful to aquatic life and water quality because of its aromatic structure. Thus, wastewater contaminated with dyes is required to treat before releasing into the water body. Sugarcane bagasse beads (SBB), sugarcane bagasse modified with titanium dioxide beads (SBBT), sugarcane bagasse modified with magnesium oxide beads (SBBM), sugarcane bagasse modified with aluminum oxide beads (SBBA), and sugarcane bagasse modified with zinc oxide beads (SBBZ) for DR28 dye removal in aqueous solution, and they were characterized with several techniques of BET, FESEM-FIB, EDX, FT-IR, and the point of zero charges (pHpzc). Their DR28 dye removal efficiencies were examined through batch tests, adsorption isotherms, and kinetics. SBBM had the highest specific surface area and pore volume, whereas its pore size was the smallest among other materials. The surfaces of SBB, SBBM, SBBT, and SBBA were scaly sheet surfaces with an irregular shape, whereas SBBZ was a coarse surface. Oxygen, carbon, calcium, chloride, sodium, O-H, C-H, C=O, C=C, and C-O-C were found in all materials. The pHpzc of SBB, SBBT, SBBM, SBBA, and SBBZ were 6.57, 7.31, 10.11, 7.25, and 7.77. All materials could adsorb DR28 dye at 50 mg/L by more than 81%, and SBBM had the highest DR28 dye removal efficiency of 94.27%. Langmuir model was an appropriate model for SBB, whereas Freundlich model was a suitable model for other materials. A pseudo-second-order kinetic model well described their adsorption mechanisms. Their adsorptions of the DR28 dye were endothermic and spontaneous. Therefore, they were potential materials for adsorbing DR28 dye, especially SBBM.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Pimploy Ngamsurach
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantikorn Libsittikul
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chawanluk Kaewpetch
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Punpruksa Butdeesak
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wachira Nachaiperm
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
4
|
Praipipat P, Ngamsurach P, Tannadee R. Influence of duck eggshell powder modifications by the calcination process or addition of iron (III) oxide-hydroxide on lead removal efficiency. Sci Rep 2023; 13:12100. [PMID: 37495622 PMCID: PMC10372095 DOI: 10.1038/s41598-023-39325-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Lead-contaminated wastewater causes toxicity to aquatic life and water quality for water consumption, so it is required to treat wastewater to be below the water quality standard before releasing it into the environment. Duck eggshell powder (DP), duck eggshell powder mixed iron (III) oxide-hydroxide (DPF), calcinated duck eggshell powder (CDP), and calcinated duck eggshell powder mixed iron (III) oxide-hydroxide (CDPF) were synthesized, characterized, and investigated lead removal efficiencies by batch experiments, adsorption isotherms, kinetics, and desorption experiments. CDPF demonstrated the highest specific surface area and pore volume with the smallest pore size than other materials, and they were classified as mesoporous materials. DP and DPF demonstrated semi-crystalline structures with specific calcium carbonate peaks, whereas CDP and CDPF illustrated semi-crystalline structures with specific calcium oxide peaks. In addition, the specific iron (III) oxide-hydroxide peaks were detected in only DPF and CDPF. Their surface structures were rough with irregular shapes. All materials found carbon, oxygen, and calcium, whereas iron, sodium, and chloride were only found in DPF and CDPF. All materials were detected O-H, C=O, and C-O, and DPF and CDPF were also found Fe-O from adding iron (III) oxide-hydroxide. The point of zero charges of DP, DPF, CDP, and CDPF were 4.58, 5.31, 5.96, and 6.75. They could adsorb lead by more than 98%, and CDPF illustrated the highest lead removal efficiency. DP and CDP corresponded to the Langmuir model while DPF and CDPF corresponded to the Freundlich model. All materials corresponded to a pseudo-second-order kinetic model. Moreover, they could be reusable for more than 5 cycles for lead adsorption of more than 73%. Therefore, CDPF was a potential material to apply for lead removal in industrial applications.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Pimploy Ngamsurach
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rattanaporn Tannadee
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
5
|
Praipipat P, Ngamsurach P, Joraleeprasert T. Synthesis, characterization, and lead removal efficiency of orange peel powder and orange peel powder doped iron (III) oxide-hydroxide. Sci Rep 2023; 13:10772. [PMID: 37402876 DOI: 10.1038/s41598-023-38035-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023] Open
Abstract
Lead contamination in wastewater causes toxicity to aquatic life, the environment, and water quality, and it causes many human dysfunctions and diseases. Thus, it is necessary to remove lead from wastewater before discharging it into the environment. Orange peel powder (OP) and orange peel powder doped iron (III) oxide-hydroxide (OPF) were synthesized, characterized, and investigated lead removal efficiencies by batch experiments, adsorption isotherms, kinetics, and desorption experiments. The specific surface area of OP and OPF were 0.431 and 0.896 m2/g, and their pore sizes were 4.462 and 2.575 nm, respectively which OPF had a higher surface area than OP, whereas its pore size was smaller than OP. They were semi-crystalline structures that presented the specific cellulose peaks, and OPF also detected the specific iron (III) oxide-hydroxide peaks. The surface morphologies of OP and OPF were irregular and porous surfaces. Carbon (C), oxygen (O), calcium (Ca), O-H, C-H, C=C, C-O, C=O, and -COOH were observed in both materials. The pHpzc of OP and OPF were 3.74 and 4.46. For batch experiments, OPF demonstrated a higher lead removal efficiency than OP because of spending less on material dosage than OP, and OPF demonstrated high lead removal by more than 95% while OP could remove lead at only 67%. Thus, the addition of iron (III) oxide-hydroxide helped to increase material efficiency for lead adsorption. Both materials corresponded to the Freundlich model relating to physiochemical adsorption, and they also corresponded to a pseudo-second-order kinetic model relating to a chemisorption process. Moreover, both materials could be reusable for more than 5 cycles for lead adsorption of more than 55%. Therefore, OPF was potential material to apply for lead removals in industrial applications.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Pimploy Ngamsurach
- Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | |
Collapse
|
6
|
Praipipat P, Ngamsurach P, Pratumkaew K. The synthesis, characterizations, and lead adsorption studies of chicken eggshell powder and chicken eggshell powder-doped iron (III) oxide-hydroxide. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
7
|
Praipipat P, Ngamsurach P, Roopkhan N. Zeolite A powder and beads from sugarcane bagasse fly ash modified with iron(III) oxide-hydroxide for lead adsorption. Sci Rep 2023; 13:1873. [PMID: 36725878 PMCID: PMC9892519 DOI: 10.1038/s41598-023-29055-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
The discharging of lead-contaminated wastewater is a concern because of its toxicity to living organisms and water quality resulting in dangerous water consumption, so it is highly recommended to remove lead from wastewater to be below water quality standards for a safe environment. Zeolite A sugarcane bagasse fly ash powder (ZB), zeolite A sugarcane bagasse fly ash powder mixed iron(III) oxide-hydroxide (ZBF), zeolite A sugarcane bagasse fly ash beads (ZBB), zeolite A sugarcane bagasse fly ash powder mixed iron(III) oxide-hydroxide beads (ZBFB), and zeolite A sugarcane bagasse fly ash beads coated iron(III) oxide-hydroxide (ZBBF) were synthesized and characterized in various techniques. Their lead removal efficiencies were investigated by batch experiments, adsorption isotherms, and kinetics. The specific surface area, pore volume, and pore size of ZB were close values to zeolite A standard (STD), and ZBF had the highest specific surface area and the smallest pore size than others. ZB and ZBF demonstrated crystalline phases whereas ZBB, ZBFB, and ZBBF were amorphous phases. The surface morphology of ZB was a cubic shape similar to STD. ZBF demonstrated an agglomerated formation of ZB and iron(III) oxide-hydroxide whereas ZBFB and ZBBF had sphere shapes with coarse surfaces. Si, Al, O, Fe, Na, Ca, O-H, (Si, Al)-O, H2O, and D4R were detected in all materials. The surface charges of all zeolite A materials had negatively charged at all pH values, and their surfaces increased more negatively charged with increasing pH value which pH 5 illustrated as the highest negatively charged in all materials. Their lead removal efficiencies were higher than 82%. Langmuir isotherm and pseudo-second-order kinetic models were well explained for their adsorption patterns and mechanisms. Finally, ZBBF is a good offer for applying in industrial wastewater treatment systems because of its easy operation and saving costs than ZBF.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- grid.9786.00000 0004 0470 0856Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Environmental Applications of Recycled and Natural Materials Laboratory (EARN), Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Pimploy Ngamsurach
- grid.9786.00000 0004 0470 0856Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Environmental Applications of Recycled and Natural Materials Laboratory (EARN), Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Naritsara Roopkhan
- grid.9786.00000 0004 0470 0856Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
8
|
Modification of sugarcane bagasse with iron(III) oxide-hydroxide to improve its adsorption property for removing lead(II) ions. Sci Rep 2023; 13:1467. [PMID: 36702856 PMCID: PMC9879982 DOI: 10.1038/s41598-023-28654-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Lead contamination in wastewater results in toxicity of aquatic life and water quality, it is recommended to remove lead before discharging. Four sugarcane bagasse adsorbent materials of sugarcane bagasse powder (SB), sugarcane bagasse powder doped iron(III) oxide-hydroxide (SBF), sugarcane bagasse powder beads (SBB), and sugarcane bagasse powder doped iron(III) oxide-hydroxide beads (SBFB) were synthesized and characterized with various techniques. Their lead removal efficiencies were investigated by batch experiments on the effects of dose (0.1-0.6 g), contact time (1-6 h), pH (1, 3, 5, 7, 9, 11), and concentration (5-30 mg/L), adsorption isotherms, kinetics, and desorption experiments. All materials were amorphous phases presenting specific peaks of cellulose. SBB and SBFB detected sodium alginate peaks, and iron(III) oxide-hydroxide peaks were detected in SBF and SBFB. SB and SBF were scales or overlapping plate surfaces whereas SBB and SBFB had spherical shapes with coarse surfaces. The main functional groups of O-H, C=O, C-H, C-O, and C=C were observed in all materials, whereas Fe-O and -COOH were only found in materials with adding iron(III) oxide-hydroxide or bead material. The point of zero charges (pHpzc) of all materials was higher than 4. The optimum conditions of SB, SBF, SBB, and SBFB with the highest lead removal efficiency at a lead concentration of 10 mg/L and pH 5 were 0.6 g and 6 h (96.08%), 0.2 g and 3 h (100%), 0.2 g and 2 h (98.22%), and 0. 1 g and 2 h (100%), respectively. Since SBFB spent less adsorbent dose and contact time than other materials with a lead removal efficiency of 100%, it was a more potential adsorbent than other materials. Thus, adding iron(III) oxide-hydroxide and changing material form helped to improve material efficiencies for lead adsorption. The maximum adsorption capacities of SB, SBF, SBB, and SBFB were 6.161, 27.027, 23.697, and 57.471 mg/L, respectively by fitting the Langmuir model. Langmuir isotherm was best fitted for SB and SBB, whereas the Freundlich model was best fitted for SBF and SBFB. The pseudo-second-order kinetic model was best fitted for all materials. Moreover, all adsorbents could be reused for more than 5 cycles with the lead removal efficiency of more than 73%. Therefore, SBFB was potential material to further apply for lead removal in industrial applications.
Collapse
|
9
|
Powdered and beaded sawdust materials modified iron (III) oxide-hydroxide for adsorption of lead (II) ion and reactive blue 4 dye. Sci Rep 2023; 13:531. [PMID: 36631520 PMCID: PMC9834253 DOI: 10.1038/s41598-023-27789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The problems of lead and reactive blue 4 (RB4) dye contamination in wastewater are concerns because of their toxicities to aquatic life and water quality, so lead and RB4 dye removals are recommended to remove from wastewater before discharging. Sawdust powder (SP), sawdust powder doped iron (III) oxide-hydroxide (SPF), sawdust beads (SPB), and sawdust powder doped iron (III) oxide-hydroxide beads (SPFB) were synthesized and characterized with various techniques, and their lead or RB4 dye removal efficiencies were investigated by batch experiments, adsorption isotherms, kinetics, and desorption experiments. SPFB demonstrated higher specific surface area (11.020 m2 g-1) and smaller pore size (3.937 nm) than other materials. SP and SPF were irregular shapes with heterogeneous structures whereas SPB and SPFB had spherical shapes with coarse surfaces. Calcium (Ca) and oxygen (O) were found in all materials whereas iron (Fe) was only found in SPF and SPFB. O-H, C-H, C=C, and C-O were detected in all materials. Their lead removal efficiencies of all materials were higher than 82%, and RB4 dye removal efficiencies of SPB and SPFB were higher than 87%. Therefore, adding iron (III) oxide-hydroxide and changing material form helped to improve material efficiencies for lead or RB4 dye adsorption. SP and SPB corresponded to Langmuir model related to a physical adsorption process whereas SPF and SPFB corresponded to the Freundlich model correlated to a chemisorption process. All materials corresponded to a pseudo-second-order kinetic model relating to the chemical adsorption process. All materials could be reused more than 5 cycles with high lead removal of 63%, and SPB and SPFB also could be reused more than 5 cycles for high RB4 dye removal of 72%. Therefore, SPFB was a potential material to apply for lead or RB4 dye removal in industrial applications.
Collapse
|
10
|
Praipipat P, Ngamsurach P, Prasongdee V. Comparative Reactive Blue 4 Dye Removal by Lemon Peel Bead Doping with Iron(III) Oxide-Hydroxide and Zinc Oxide. ACS OMEGA 2022; 7:41744-41758. [PMID: 36406531 PMCID: PMC9670269 DOI: 10.1021/acsomega.2c05956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The increasing concern of dye contamination in wastewater results in the toxicity of aquatic life and water quality, so wastewater treatment is required to treat the low water quality standard for safety purposes. Lemon peel beads-doped iron(III) oxide-hydroxide (LBF) and lemon peel beads-doped zinc oxide (LBZ) were synthesized and characterized to investigate their crystalline structure, surface morphology, chemical compositions, chemical functional groups, and ζ potentials by X-ray diffraction, field emission scanning electron microscopy and focused ion beam, energy dispersive X-ray spectroscopy, Fourier transform infrared, and zetasizer techniques. Their effects of dose, contact time, temperature, pH, and concentration for reactive blue 4 (RB4) dye removal efficiencies were investigated by batch experiments, and their adsorption isotherms, kinetics, and desorption experiments were also studied. LBF and LBZ demonstrated semicrystalline structures, and their surface morphologies had a spherical shape with coarse surfaces. Five main elements of carbon (C), oxygen (O), calcium (Ca), chlorine (Cl), and sodium (Na) and six main function groups of O-H, C≡N, C=C, C-OH, C-O-C, and C-H were detected in both materials. The results of ζ potential demonstrated that both LBF and LBZ had negative charges on the surface at all pH values, and their surfaces increased more of the negative charge with the addition of the pH value from 2-12. For batch tests, the RB4 dye removal efficiencies of LBF and LBZ were 83.55 and 66.64%, respectively, so LBF demonstrated a higher RB4 dye removal efficiency than LBZ. As a result, the addition of iron(III) oxide-hydroxide helped in improving the material efficiency more than zinc oxide. In addition, both LBF and LBZ could be reused in more than five cycles for RB4 dye removal of more than 41%. The Freundlich model was a good explanation for their adsorption patterns relating to physiochemical adsorption, and a pseudo-second-order kinetic model was a well-fitted model for explaining their adsorption mechanism correlating to the chemisorption process with heterogeneous adsorption. Therefore, LBF was a potential adsorbent to further apply for RB4 dye removal in industrial applications.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- Department
of Environmental Science, Khon Kaen University, Khon Kaen40002, Thailand
- Environmental
Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen40002, Thailand
| | - Pimploy Ngamsurach
- Department
of Environmental Science, Khon Kaen University, Khon Kaen40002, Thailand
- Environmental
Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen40002, Thailand
| | | |
Collapse
|
11
|
Ngamsurach P, Praipipat P. Comparative antibacterial activities of Garcinia cowa and Piper sarmentosum extracts against Staphylococcus aureus and Escherichia coli with studying on disc diffusion assay, material characterizations, and batch experiments. Heliyon 2022; 8:e11704. [DOI: 10.1016/j.heliyon.2022.e11704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/18/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
|
12
|
Ngamsurach P, Namwongsa N, Praipipat P. Synthesis of powdered and beaded chitosan materials modified with ZnO for removing lead (II) ions. Sci Rep 2022; 12:17184. [PMID: 36229648 PMCID: PMC9561170 DOI: 10.1038/s41598-022-22182-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 01/04/2023] Open
Abstract
Lead contamination in wastewater may affect aquatic organisms, the environment, and human consumption because it is a highly toxic metal that caused human health effects. Thus, it is recommended to remove lead before releasing it into the environment. Powdered and beaded chitosan materials modified with ZnO were synthesized and investigated by various characterized techniques. Lead removal efficiencies of chitosan materials were studied by batch experiments, adsorption isotherms, and kinetics. Chitosan powder (CP), chitosan beads (CB), chitosan beads mixed ZnO (CZB), and chitosan beads coated ZnO (ZCB) were synthesized. CP represented a semi-crystalline structure while CB was an amorphous structure. CZB and ZCB were semi-crystalline structures with ZnO peaks. CP was a scaly-sheet and coarse surface while CB, CZB, and ZCB were sphere shapes with scaly-sheet surfaces. C, O, and N were the main chemical elements in chitosan materials, and Zn was detected in CZB and ZCB. O-H, N-H, and C-O were the main functional groups of chitosan materials. All chitosan materials had high lead removal efficiencies of more than 92%, and Freundlich and pseudo-second-order kinetic models well explained their adsorption patterns and mechanisms. Therefore, both adding metal oxide and changing material form are recommended for improving material efficiency, and ZCB was a good offer for further industrial applications.
Collapse
Affiliation(s)
- Pimploy Ngamsurach
- Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nitthawan Namwongsa
- Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pornsawai Praipipat
- Department of Environmental Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
13
|
Praipipat P, Ngamsurach P, Saekrathok C, Phomtai S. Chicken and duck eggshell beads modified with iron (III) oxide-hydroxide and zinc oxide for reactive blue 4 dye removal. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|