1
|
Shi H, Zhang X, Chen S, He L, Wang W, Shao S, Qiu G, Guo W. Construction of efficient and environmentally friendly bio-based flame retardant cotton fabric through layer by layer self-assembly of alkylammonium functional silsesquioxane/phosphorylated sodium alginate. Int J Biol Macromol 2024; 271:132345. [PMID: 38750848 DOI: 10.1016/j.ijbiomac.2024.132345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024]
Abstract
As an important source of green cleaning flame retardants, bio-based materials have been widely studied by researchers. However, the development of efficient biobased flame retardants and convenient finishing methods was of great significance for the functional finishing of materials. Herein, a convenient and efficient flame retardant cotton fabric was prepared via layer by layer self-assembly (LbL) by alternating precipitation of a novel bio-based flame retardant phosphorylated sodium alginate (PSA) and alkylammonium functionalized siloxane (A-POSS). The effect of coating number on flame retardancy and thermal properties of coated cotton fabric was systematically studied. Thermogravimetric analysis (TGA) results showed that residual char contents of AP/PS-15BL under air and N2 atmospheres increased by 252.0% and 225.2%, respectively, compared with control cotton. In vertical flammability tests, both the AP/PS-10BL and AP/PS-15BL showed self-extinguishing behavior and successfully passed the UL-94 V-0 rating. More importantly, the LOI value of AP/PS-15BL was significantly increased to 35.0% from 20.0% of pure cotton fabric. Additionally, coated samples showed good mechanical properties and washable resistance. In CONE test, the peak heat release rate (PHRR) and total heat release rate (THR) of AP/PS-15BL decreased by 89.3% and 49.3% respectively, compared with control cotton. Therefore, this green and convenient flame-retardant finishing method has great application potential in the multi-functional finishing of cotton fabrics.
Collapse
Affiliation(s)
- Haojie Shi
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xinyao Zhang
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shun Chen
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lingxin He
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Australia
| | - Siqing Shao
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Guofang Qiu
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wenwen Guo
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Dong S, Wang Y, Liu L, Jia H, Zang Y, Zu L, Lan T, Wang J. Synthesis and Characterization of a Novel DOPO-Based Flame Retardant Intermediate and Its Flame Retardancy as a Polystyrene Intrinsic Flame Retardant. ACS OMEGA 2023; 8:48825-48842. [PMID: 38162735 PMCID: PMC10753556 DOI: 10.1021/acsomega.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The research on intrinsic flame retardant has become a hot topic in the field of flame retardant. The synthesis of reactive flame-retardant monomer is one of the effective methods to obtain an intrinsic flame retardant. In addition, in view of the small molecular flame retardant easily migrates from the polymer during the use process, which leads to the gradual reduction of the flame retardant effect and even the gradual loss of flame retardant performance, and the advantages of atom transfer radical polymerization (ATRP) technology in polymer structure design and function customization, we first synthesized reactive flame retardant monomer 6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (FAA-DOPO), then synthesized polystyrene bromine (PS148-Br) macromolecular initiator by ATRP technology, and finally obtained block copolymer polystyrene-b-poly{6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide} (PS-b-PFAA-DOPO) by the polymerization of FAA-DOPO initiated by macromolecular initiator PS148-Br by ATRP technology. The chemical structure of FAA-DOPO was characterized by 1D and 2D NMR (1H, 13C, DEPT 135, HSQC, COSY, NOE, and HMBC) spectra, Fourier transform infrared spectroscopy (FTIR), liquid chromatography-tandem mass spectrometry (LC-MS) and X-ray photoelectron spectroscopy (XPS). The chemical structure and molecular weight of PS-b-PFAA-DOPO were characterized by FTIR and gel permeation chromatography (GPC). The thermal and flame-retardant properties of PS-b-PFAA-DOPO were characterized by thermogravimetry analysis (TG), UL-94, limiting oxygen index (LOI), and microscale combustion calorimetry (MCC). It was found that FAA-DOPO could be used as a monomer for polymerization, although FAA-DOPO had a large steric hindrance from the chemical structure of FAA-DOPO, the UL-94 grade of PS-b-PFAA-DOPO reached the V-0 grade, and the LOI increased by 59.12% compared with PS148-Br.
Collapse
Affiliation(s)
- Shaobo Dong
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Yazhen Wang
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
- College
of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People’s Republic of China
| | - Li Liu
- College
of Chemistry and Chemical Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Hongge Jia
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Yu Zang
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Liwu Zu
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Tianyu Lan
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Jun Wang
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
| |
Collapse
|
3
|
Qi P, Chen F, Li Y, Jiang Y, Zhu T, Sun J, Li H, Gu X, Zhang S. Environmental benign foam finishing with a hyperbranched polyphosphonate flame retardant for polyethylene terephthalate fabric. CHEMOSPHERE 2023; 317:137892. [PMID: 36657581 DOI: 10.1016/j.chemosphere.2023.137892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
It is still a big challenge for textile industry in improving fire resistance and reducing melt dripping with minimal loss on the physical properties of polyethylene terephthalate (PET) fabrics. In this work, a highly-effective hyperbranched flame retardant (DT) was first synthesized by ester exchange without using any organic solvent. Then, the DT foam was prepared and blade coated on PET fabric to improve the fire performance. The prepared PET fabric with only 2.7% weight gain of DT was self-extinguished and did not produce any molten dripping during the vertical flammable test. The peak heat release rate and total heat release of the PET fabric sample with 19.4% DT were decreased by 42.0% and 57.1%, respectively compared with that of the control PET. Besides, the as-prepared PET fabric sample showed better physical properties such as breaking strength, vapor permeability, air permeability, antistatic property, and softness than the control PET fabric sample. The DT foam finishing process did not involve any organic solvent and consumed less water and energy compared with conventional fabric treatments. It is expected that this work provides a facile and eco-friendly strategy for fabricating flame retardant PET fabric with excellent comprehensive performances.
Collapse
Affiliation(s)
- Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Yuchun Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Yichong Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Tao Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China.
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China.
| |
Collapse
|