1
|
Noureena MM, Puhazhendhi A, Sivalingam S, Anu AS, Vinod Kumar N, Rithesh Raj D. L-tryptophan carbon dots as a fluorescent probe for malachite green detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125625. [PMID: 39733533 DOI: 10.1016/j.saa.2024.125625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/22/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor. L-Trp-C-dots exhibited different quenching responses to MG, and other interfering species, consequently offering a selective strategy to detect MG. The proposed sensor shows a limit of detection (LOD) of 0.06 μM and a limit of quantification (LOQ) of 0.22 μM with in the linearity range of 0 to 60 µM concentration. Additionally, the relative standard deviation (RSD) was found to be below 1.7 %. Furthermore, the recovery of MG from the real-time samples (green peas) was investigated.
Collapse
Affiliation(s)
- M M Noureena
- Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India
| | - Arulmozhi Puhazhendhi
- School of Chemical and Biotechnology, SASTRA deemed to be University, Thanjavur 613401, India
| | - Soumya Sivalingam
- School of Chemical and Biotechnology, SASTRA deemed to be University, Thanjavur 613401, India
| | - A S Anu
- International and Inter-University Centre for Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, India
| | - N Vinod Kumar
- School of Chemical and Biotechnology, SASTRA deemed to be University, Thanjavur 613401, India
| | - D Rithesh Raj
- Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India.
| |
Collapse
|
2
|
Deo SS, Naser SS, Sinha A, Mohapatra SK, Parmar AS, Kujawska M, Verma SK, Tripathy J. Biophysical translational posterity of green carbon quantum dots: the unparalleled versatility. Nanomedicine (Lond) 2024; 19:2747-2776. [PMID: 39311508 DOI: 10.1080/17435889.2024.2402682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 12/12/2024] Open
Abstract
Carbon dots (CQDs), zero-dimensional carbon nanostructures, have attracted considerable interest among researchers due to their versatile applications. CQDs exhibit exceptional photoluminescent properties and high quantum yield, making them ideal candidates for bioimaging, drug delivery and environmental sensing. Their biocompatibility and tunable surface chemistry enable targeted therapeutic delivery and real-time imaging with minimal toxicity. Additionally, CQDs are emerging as promising materials in optoelectronics, offering sustainable alternatives in light-emitting diodes and solar cells. This review underscores the unparalleled adaptability of green CQDs in bridging the gap between laboratory research and practical applications, paving the way for innovative solutions in healthcare and environmental monitoring. Through comprehensive analysis, it advances the understanding of CQDs, positioning them at the forefront of next-generation nanomaterials with significant translational impact.
Collapse
Affiliation(s)
- Simran Singh Deo
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, India
| | | | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Swagat K Mohapatra
- Department of Industrial & Engineering Chemistry, ICT-IOCB, Bhubaneswar, Odisha, 751013, India
| | | | | | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
- Department of Toxicology, Poznan University of Medical Sciences, Poland
| | | |
Collapse
|
3
|
Shang J, Zhou Q, Wang K, Wei Y. Engineering of Green Carbon Dots for Biomedical and Biotechnological Applications. Molecules 2024; 29:4508. [PMID: 39339503 PMCID: PMC11434350 DOI: 10.3390/molecules29184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Carbon dots (CDs) are attracting increasing research attention due to their exceptional attributes, including their biocompatibility, water solubility, minimal toxicity, high photoluminescence, and easy functionalization. Green CDs, derived from natural sources such as fruits and vegetables, present advantages over conventionally produced CDs, such as cost-effectiveness, stability, simplicity, safety, and environmental friendliness. Various methods, including hydrothermal and microwave treatments, are used to synthesize green CDs, which demonstrate strong biocompatibility, stability, and luminescence. These properties give green CDs versatility in their biological applications, such as bioimaging, biosensing, and drug delivery. This review summarizes the prevalent synthesis methods and renewable sources regarding green CDs; examines their optical features; and explores their extensive biological applications, including in bioimaging, biosensing, drug/gene delivery, antimicrobial and antiviral effects, formatting of mathematical components, cancer diagnosis, and pharmaceutical formulations.
Collapse
Affiliation(s)
| | | | | | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.S.); (Q.Z.); (K.W.)
| |
Collapse
|
4
|
Kohantorabi M, Ugolotti A, Sochor B, Roessler J, Wagstaffe M, Meinhardt A, Beck EE, Dolling DS, Garcia MB, Creutzburg M, Keller TF, Schwartzkopf M, Vayalil SK, Thuenauer R, Guédez G, Löw C, Ebert G, Protzer U, Hammerschmidt W, Zeidler R, Roth SV, Di Valentin C, Stierle A, Noei H. Light-Induced Transformation of Virus-Like Particles on TiO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37275-37287. [PMID: 38959130 PMCID: PMC11261565 DOI: 10.1021/acsami.4c07151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
Collapse
Affiliation(s)
- Mona Kohantorabi
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Aldo Ugolotti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Benedikt Sochor
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Johannes Roessler
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Michael Wagstaffe
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Alexander Meinhardt
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - E. Erik Beck
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Daniel Silvan Dolling
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Miguel Blanco Garcia
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Marcus Creutzburg
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Thomas F. Keller
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | | | - Sarathlal Koyiloth Vayalil
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Applied
Science Cluster, UPES, 248007 Dehradun, India
| | - Roland Thuenauer
- Technology
Platform Light Microscopy (TPLM), Universität
Hamburg (UHH), 22607 Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Technology
Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Gabriela Guédez
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Gregor Ebert
- Institute
of Virology, Technical University of Munich/Helmholtz
Munich, 81675 Munich, Germany
| | - Ulrike Protzer
- Institute
of Virology, Technical University of Munich/Helmholtz
Munich, 81675 Munich, Germany
| | - Wolfgang Hammerschmidt
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Reinhard Zeidler
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
- Department
of Otorhinolaryngology, LMU University Hospital, LMU München, 81377 Munich, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- KTH
Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Andreas Stierle
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Heshmat Noei
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- The
Hamburg Centre for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
| |
Collapse
|
5
|
Nguyen KG, Huš M, Baragau IA, Bowen J, Heil T, Nicolaev A, Abramiuc LE, Sapelkin A, Sajjad MT, Kellici S. Engineering Nitrogen-Doped Carbon Quantum Dots: Tailoring Optical and Chemical Properties through Selection of Nitrogen Precursors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310587. [PMID: 38546418 DOI: 10.1002/smll.202310587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Indexed: 06/13/2024]
Abstract
The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.
Collapse
Affiliation(s)
- Kiem G Nguyen
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Matej Huš
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, SI-1001, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, Ljubljana, 1000, Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia (ZVKDS), Poljanska 40, Ljubljana, 1000, Slovenia
| | - Ioan-Alexandru Baragau
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - James Bowen
- School of Engineering and Innovation, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Tobias Heil
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Adela Nicolaev
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Laura Elena Abramiuc
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Andrei Sapelkin
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Muhammad Tariq Sajjad
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Suela Kellici
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| |
Collapse
|
6
|
Sahu KM, Biswal A, Manisha U, Swain SK. Synthesis and drug release kinetics of ciprofloxacin from polyacrylamide/dextran/carbon quantum dots (PAM/Dex/CQD) hydrogels. Int J Biol Macromol 2024; 269:132132. [PMID: 38723831 DOI: 10.1016/j.ijbiomac.2024.132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Sustainable release of drug by utilizing β-cyclodextrin (β-CD) based inclusion complex (IC) is the prime objective of the present work. Herein, polyacrylamide/dextran containing carbon quantum dots (PAM/Dex/CQD) nanocomposite hydrogels are prepared by in situ polymerization of acrylamide. The incorporation of CQD triggers the change in orientation of the PAM/Dex polymeric chains to result the formation of stacked surface morphology of the hydrogel. The average particle size of CQD is found to be 4.13 nm from HRTEM analysis. As-synthesized nanocomposite hydrogel exhibits an optimum swelling ratio of 863 % in aqueous medium. The cytotoxicity study is conducted on HeLa cells by taking up to 2 μM concentration of the prepared nanocomposite hydrogel demonstrate 78 % cell viability. In present study, ciprofloxacin (Cipro) is taken as model drug that achieves release of 64.15 % in 32 h from β-Cipro@PAM/Dex/CQD hydrogels in acidic medium. From theoretical study, release rate constants, R2, Akaike information criterion (AIC) and model selection criterion (MSC) are computed to determine the best fitted kinetics model. Peppas-Sahlin model is the best fitted kinetics model for β-Cipro@PAM/Dex/CQD and concluded that the release of Cipro follows Fickian drug diffusion mechanism in acidic medium.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Upuluri Manisha
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
7
|
Chen W, Yin H, Cole I, Houshyar S, Wang L. Carbon Dots Derived from Non-Biomass Waste: Methods, Applications, and Future Perspectives. Molecules 2024; 29:2441. [PMID: 38893317 PMCID: PMC11174087 DOI: 10.3390/molecules29112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| | - Hong Yin
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Ivan Cole
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Shadi Houshyar
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Lijing Wang
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| |
Collapse
|
8
|
Ikram Z, Azmat E, Perviaz M. Degradation Efficiency of Organic Dyes on CQDs As Photocatalysts: A Review. ACS OMEGA 2024; 9:10017-10029. [PMID: 38463277 PMCID: PMC10918811 DOI: 10.1021/acsomega.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Across the globe, the task of providing clean and safe drinking water is getting harder. Organic contaminants, including dyes and pharmaceutical medications, are a significant environmental threat, especially in aquatic bodies due to their uncontrolled emission. Therefore, a method for their degradation in water bodies that is both environmentally friendly and commercially feasible must be developed. In the realm of photocatalysis, carbon-based nanomaterials have drawn more attention in the last ten years. Due to their exceptional and distinct qualities, metal-free carbon-based photocatalytic systems have received a lot of attention recently for their ability to degrade organic contaminants into semiconductor quantum dots, which are already available. A class of nanomaterials with a particle size between 2 and 10 nm showing distinct optoelectrical characteristics is among the variety of catalytic quantum dots. This review covers several synthesis techniques such as electrochemical, laser ablation, microwave radiation, hydrothermal, and optical features of CQDs such as the photoluminescent (PL) property and quantum confinement effect. The uses of CQDs in the degradation of various dyes as well as the difficulties that still exist and the opportunities that lie ahead have also been explored.
Collapse
Affiliation(s)
- Zulkifle Ikram
- Department
of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1- Khayaban-e- Jinnah, Johar Town, Lahore 54000, Pakistan
| | - Esha Azmat
- Department
of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1- Khayaban-e- Jinnah, Johar Town, Lahore 54000, Pakistan
| | - Muhammad Perviaz
- Department
of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1- Khayaban-e- Jinnah, Johar Town, Lahore 54000, Pakistan
| |
Collapse
|
9
|
Kumar V, Mirsky SK, Shaked NT, Gazit E. High Quantum Yield Amino Acid Carbon Quantum Dots with Unparalleled Refractive Index. ACS NANO 2024; 18:2421-2433. [PMID: 38190624 PMCID: PMC10811667 DOI: 10.1021/acsnano.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Carbon quantum dots (CQDs) are one of the most promising types of fluorescent nanomaterials due to their exceptional water solubility, excellent optical properties, biocompatibility, chemical inertness, excellent refractive index, and photostability. Nitrogen-containing CQDs, which include amino acid based CQDs, are especially attractive due to their high quantum yield, thermal stability, and potential biomedical applications. Recent studies have attempted to improve the preparation of amino acid based CQDs. However, the highest quantum yield obtained for these dots was only 44%. Furthermore, the refractive indices of amino acid derived CQDs were not determined. Here, we systematically explored the performance of CQDs prepared from all 20 coded amino acids using modified hydrothermal techniques allowing more passivation layers on the surface of the dots to optimize their performance. Intriguingly, we obtained the highest refractive indices ever reported for any CQDs. The values differed among the amino acids, with the highest refractive indices found for positively charged amino acids including arginine-CQDs (∼2.1), histidine-CQDs (∼2.0), and lysine-CQDs (∼1.8). Furthermore, the arginine-CQDs reported here showed a nearly 2-fold increase in the quantum yield (∼86%) and a longer decay time (∼8.0 ns) compared to previous reports. In addition, we also demonstrated that all amino acid based CQD materials displayed excitation-dependent emission profiles (from UV to visible) and were photostable, water-soluble, noncytotoxic, and excellent for high contrast live cell imaging or bioimaging. These results indicate that amino acid based CQD materials are high-refractive-index materials applicable for optoelectronic devices, bioimaging, biosensing, and studying cellular organelles in vivo. This extraordinary RI may be highly useful for exploring cellular elements with different densities.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Simcha K. Mirsky
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natan T. Shaked
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Zong M, Zhang Z, Ning X, Cheng H, Zhao Y, Ren J, Liu Y, Zhang R, Cui J, Hou Y, Li B, Wu X. Synthesis of multicolor luminescent carbon dots based on carboxymethyl chitosan for cell imaging and wound healing application: In vitro and in vivo studies. Int J Biol Macromol 2023; 253:127405. [PMID: 37832617 DOI: 10.1016/j.ijbiomac.2023.127405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The construction of biomaterials that can facilitate wound healing is significantly challenging in the medical field, and bacterial infections increase this complexity. In this study, we selected the biomacromolecule carboxymethyl chitosan as a carbon source and citric acid as an auxiliary carbon source. We prepared carbon quantum dots with multicolor luminescence properties and higher quantum yields (QYs) using a facile one-pot hydrothermal method. We characterized them to select carbon dots (CDs) suitable for cell growth. Subsequently, their biocompatibility with L929 cells, antibacterial properties against Staphylococcus aureus, and efficiency in promoting wound healing in vivo were investigated. Our experimental results showed that CDs at an appropriate concentration had excellent bioimaging ability, were suitable for cell growth, and accelerated the healing of infected wounds. We believe these bioactive CDs have great potential in promoting wound healing.
Collapse
Affiliation(s)
- Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Zheyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Xiao Ning
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Jiayu Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yuxi Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
11
|
Santos N, Valenzuela S, Segura C, Osorio-Roman I, Arrázola MS, Panadero-Medianero C, Santana PA, Ahumada M. Poly(ethylene imine)-chitosan carbon dots: study of its physical-chemical properties and biological in vitro performance. DISCOVER NANO 2023; 18:129. [PMID: 37847425 PMCID: PMC10581970 DOI: 10.1186/s11671-023-03907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Carbon dots (CDs) have been quickly extended for nanomedicine uses because of their multiple applications, such as bioimaging, sensors, and drug delivery. However, the interest in increasing their photoluminescence properties is not always accompanied by cytocompatibility. Thus, a knowledge gap exists regarding their interactions with biological systems linked to the selected formulations and synthesis methods. In this work, we have developed carbon dots (CDs) based on poly (ethylene imine) (PEI) and chitosan (CS) by using microwave irradiation, hydrothermal synthesis, and a combination of both, and further characterized them by physicochemical and biological means. Our results indicate that synthesized CDs have sizes between 1 and 5 nm, a high presence of amine groups on the surface, and increased positive ζ potential values. Further, it is established that the choice and use of different synthesis procedures can contribute to a different answer to the CDs regarding their optical and biological properties. In this regard, PEI-only CDs showed the longest photoluminescent emission lifetime, non-hemolytic activity, and high toxicity against fibroblast. On the other hand, CS-only CDs have higher PL emission, non-cytotoxicity associated with fibroblast, and high hemolytic activity. Interestingly, their combination using the proposed methodologies allow a synergic effect in their CDs properties. Therefore, this work contributes to developing and characterizing CD formulations based on PEI and CS and better understanding the CD's properties and biological interaction.
Collapse
Affiliation(s)
- Nicolás Santos
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile
| | - Santiago Valenzuela
- Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago, Chile
| | - Camilo Segura
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja S/N, Valdivia, Región de los Ríos, Chile
| | - Igor Osorio-Roman
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja S/N, Valdivia, Región de los Ríos, Chile
| | - Macarena S Arrázola
- Centro de Biología Integrativa, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile
| | - Concepción Panadero-Medianero
- Centro de Biología Integrativa, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile
| | - Paula A Santana
- Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile.
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile.
| |
Collapse
|
12
|
Abu N, Chinnathambi S, Kumar M, Etezadi F, Bakhori NM, Zubir ZA, Md Salleh SN, Shueb RH, Karthikeyan S, Thangavel V, Abdullah J, Pandian GN. Development of biomass waste-based carbon quantum dots and their potential application as non-toxic bioimaging agents. RSC Adv 2023; 13:28230-28249. [PMID: 37753403 PMCID: PMC10518661 DOI: 10.1039/d3ra05840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Over recent years, carbon quantum dots (CQDs) have advanced significantly and gained substantial attention for their numerous benefits. These benefits include their simple preparation, cost-effectiveness, small size, biocompatibility, bright luminescence, and low cytotoxicity. As a result, they hold great potential for various fields, including bioimaging. A fascinating aspect of synthesizing CQDs is that it can be accomplished by using biomass waste as the precursor. Furthermore, the synthesis approach allows for control over the physicochemical characteristics. This paper unequivocally examines the production of CQDs from biomass waste and their indispensable application in bioimaging. The synthesis process involves a simple one-pot hydrothermal method that utilizes biomass waste as a carbon source, eliminating the need for expensive and toxic reagents. The resulting CQDs exhibit tunable fluorescence and excellent biocompatibility, making them suitable for bioimaging applications. The successful application of biomass-derived CQDs has been demonstrated through biological evaluation studies in various cell lines, including HeLa, Cardiomyocyte, and iPS, as well as in medaka fish eggs and larvae. Using biomass waste as a precursor for CQDs synthesis provides an environmentally friendly and sustainable alternative to traditional methods. The resulting CQDs have potential applications in various fields, including bioimaging.
Collapse
Affiliation(s)
- Norhidayah Abu
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150 Kelantan Malaysia
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Mahima Kumar
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Fatemeh Etezadi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Noremylia Mohd Bakhori
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Zuhana Ahmad Zubir
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Shahrul Nizam Md Salleh
- Advanced Materials Research Centre (AMREC), SIRIM Berhad Lot 34, Jalan Hi-Tech 2/3, Kulim, Hi-Tech Park 09000 Kulim Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150 Kelantan Malaysia
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology Chennai 600 127 India
| | - Vaijayanthi Thangavel
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Serdang 43400 Selangor Malaysia
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto Japan
| |
Collapse
|
13
|
Bhattacharya T, Shin GH, Kim JT. Carbon Dots: Opportunities and Challenges in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15031019. [PMID: 36986879 PMCID: PMC10059251 DOI: 10.3390/pharmaceutics15031019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recently, carbon dots (CDs) have been actively studied and reported for their various properties. In particular, the specific characteristics of carbon dots have been considered as a possible technique for cancer diagnosis and therapy. This is also a cutting-edge technology that offers fresh ideas for treating various disorders. Though carbon dots are still in their infancy and have not yet shown their value to society, their discovery has already resulted in some noteworthy advancements. The application of CDs indicates conversion in natural imaging. Photography using CDs has demonstrated extraordinary appropriateness in bio-imaging, the discovery of novel drugs, the delivery of targeted genes, bio-sensing, photodynamic therapy, and diagnosis. This review seeks to provide a comprehensive understanding of CDs, including their benefits, characteristics, applications, and mode of action. In this overview, many CD design strategies will be highlighted. In addition, we will discuss numerous studies on cytotoxic testing to demonstrate the safety of CDs. The current study will address the production method, mechanism, ongoing research, and application of CDs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| |
Collapse
|
14
|
Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Carbon quantum dots (CQDs), also known as carbon dots (CDs), are novel zero-dimensional fluorescent carbon-based nanomaterials. CQDs have attracted enormous attention around the world because of their excellent optical properties as well as water solubility, biocompatibility, low toxicity, eco-friendliness, and simple synthesis routes. CQDs have numerous applications in bioimaging, biosensing, chemical sensing, nanomedicine, solar cells, drug delivery, and light-emitting diodes. In this review paper, the structure of CQDs, their physical and chemical properties, their synthesis approach, and their application as a catalyst in the synthesis of multisubstituted 4H pyran, in azide-alkyne cycloadditions, in the degradation of levofloxacin, in the selective oxidation of alcohols to aldehydes, in the removal of Rhodamine B, as H-bond catalysis in Aldol condensations, in cyclohexane oxidation, in intrinsic peroxidase-mimetic enzyme activity, in the selective oxidation of amines and alcohols, and in the ring opening of epoxides are discussed. Finally, we also discuss the future challenges in this research field. We hope this review paper will open a new channel for the application of CQDs as a catalyst in organic synthesis.
Collapse
|