1
|
Mamta, Chaudhary A. Novel tetraaza macrocyclic Schiff base complexes of bivalent zinc: microwave-assisted green synthesis, spectroscopic characterization, density functional theory calculations, molecular docking studies, in vitro antimicrobial and anticancer activities. Biometals 2024; 37:1431-1456. [PMID: 38922505 DOI: 10.1007/s10534-024-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
In the present manuscript, novel macrocyclic Schiff base complexes [Zn(N4MacL1)Cl2-Zn(N4MacL3)Cl2] were synthesized by the reaction of ZnCl2 and macrocyclic ligands (N4MacL1-N4MacL3) derived from diketone and diamines under microwave irradiation method and conventional method. The structures of the obtained complexes were identified by various spectrometric methods such as Fourier transformation infra-red (FT-IR), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), powder X-ray diffraction, molar conductivity, and UV-vis. The structures of the synthesized compounds were optimized by using the def2-TZV/J and def2-SVP/J Coulomb fitting basis sets at B3LYP level in density functional theory (DFT) calculations. The macrocyclic Schiff base complexes exhibited higher activities against Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus), Gram-negative bacteria (Escherichia coli and Xanthomonas campestris), and fungal strains (Fusarium oxysporum and Candida albicans) in comparison to macrocyclic Schiff base ligands. Furthermore, the newly synthesized macrocyclic compounds were assessed for their anticancer activity against three cell lines: A549 (human alveolar adenocarcinoma epithelial cell line), HT-29 (human colorectal adenocarcinoma cell line), and MCF-7 (human breast adenocarcinoma cell line) using the MTT assay. The obtained results showed that the macrocyclic complex [Zn(N4MacL3)Cl2] displayed the highest cytotoxic activity (2.23 ± 0.25 µM, 6.53 ± 0.28 µM, and 7.40 ± 0.45 µM for A549, HT-29, and MCF-7 cancer cell lines, respectively). Additionally, molecular docking investigations were conducted to elucidate potential molecular interactions between the synthesized macrocyclic compounds and target proteins. The results revealed a consistent agreement between the docking calculations and the experimental data.
Collapse
Affiliation(s)
- Mamta
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashu Chaudhary
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
2
|
Işık A, Acar Çevik U, Karayel A, Ahmad I, Patel H, Çelik İ, Gül Ü, Bayazıt G, Bostancı HE, Koçak A, Özkay Y, Kaplancıklı ZA. Synthesis, DFT Calculations, In Silico Studies, and Antimicrobial Evaluation of Benzimidazole-Thiadiazole Derivatives. ACS OMEGA 2024; 9:18469-18479. [PMID: 38680334 PMCID: PMC11044166 DOI: 10.1021/acsomega.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
In this study, a series of new benzimidazole-thiadiazole hybrids were synthesized, and the synthesized compounds were screened for their antimicrobial activities against eight species of pathogenic bacteria and three fungal species. Azithromycin, voriconazole, and fluconazole were used as reference drugs in the mtt assay. Among them, compounds 5f and 5h showed potent antifungal activity against C. albicans with a MIC of 3.90 μg/mL. Further, the results of the antimicrobial assay for compounds 5a, 5b, 5f, and 5h proved to be potent against E. faecalis (ATCC 2942) on the basis of an acceptable MIC value of 3.90 μg/mL. The cytotoxic effects of compounds that are effective as a result of their antimicrobial activity on healthy mouse fibroblast cells (L929) were evaluated. According to HOMO-LUMO analysis, compound 5h (with the lower ΔE = 3.417 eV) is chemically more reactive than the other molecules, which is compatible with the highest antibacterial and antifungal activity results. A molecular docking study was performed to understand their binding modes within the sterol 14-α demethylase active site and to interpret their promising fungal inhibitory activities. Molecular dynamics (MD) simulations of the most potent compounds 5f and 5h were found to be quite stable in the active site of the 14-α demethylase (5TZ1) protein.
Collapse
Affiliation(s)
- Ayşen Işık
- Department
of Biochemistry, Faculty of Science, Selçuk
University, Konya, Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Arzu Karayel
- Department
of Physics, Faculty of Arts and Science, Hitit University, Çorum 19030, Turkey
| | - Iqrar Ahmad
- Department
of Pharmaceutical Chemistry, Prof. Ravindra
Nikam College of Pharmacy, Gondur, Dhule, Maharashtra 424002, India
| | - Harun Patel
- Division
of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur, Maharashtra 425405, India
| | - İsmail Çelik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ülküye
Dudu Gül
- Department
of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Gizem Bayazıt
- Department
of Biotechnology, Institute of Graduate Studies, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Biochemistry, Faculty of Pharmacy, Cumhuriyet
University, Sivas, Turkey
| | - Ahmet Koçak
- Department
of Chemistry, Faculty of Science, Selçuk
University, Konya, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
3
|
Kciuk M, Marciniak B, Celik I, Zerroug E, Dubey A, Sundaraj R, Mujwar S, Bukowski K, Mojzych M, Kontek R. Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery-In Vitro and In Silico Evaluation. Int J Mol Sci 2023; 24:10959. [PMID: 37446136 DOI: 10.3390/ijms241310959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides (MM-compounds) are a relatively new class of heterocyclic compounds that exhibit a wide variety of biological actions, including anticancer properties. Here, we used caspase enzyme activity assays, flow cytometry analysis of propidium iodide (PI)-stained cells, and a DNA laddering assay to investigate the mechanisms of cell death triggered by the MM-compounds (MM134, -6, -7, and -9). Due to inconsistent results in caspase activity assays, we have performed a bromodeoxyuridine (BrdU) incorporation assay, colony formation assay, and gene expression profiling. The compounds' cytotoxic and pro-oxidative properties were also assessed. Additionally, computational studies were performed to demonstrate the potential of the scaffold for future drug discovery endeavors. MM-compounds exhibited strong micromolar (0.06-0.35 µM) anti-proliferative and pro-oxidative activity in two cancer cell lines (BxPC-3 and PC-3). Activation of caspase 3/7 was observed following a 24-h treatment of BxPC-3 cells with IC50 concentrations of MM134, -6, and -9 compounds. However, no DNA fragmentation characteristics for apoptosis were observed in the flow cytometry and DNA laddering analysis. Gene expression data indicated up-regulation of BCL10, GADD45A, RIPK2, TNF, TNFRSF10B, and TNFRSF1A (TNF-R1) following treatment of cells with the MM134 compound. Moreover, in silico studies indicated AKT2 kinase as the primary target of compounds. MM-compounds exhibit strong cytotoxic activity with pro-oxidative, pro-apoptotic, and possibly pro-necroptotic properties that could be employed for further drug discovery approaches.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Enfale Zerroug
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 274203, Uttar Prades, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
4
|
Acar Çevik U, Celik I, İnce U, Maryam Z, Ahmad I, Patel H, Özkay Y, Asım Kaplancıklı Z. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New 1,3,4-Thiadiazole Derivatives as Potent Antimicrobial Agents. Chem Biodivers 2023; 20:e202201146. [PMID: 36764924 DOI: 10.1002/cbdv.202201146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1 H-NMR, 13 C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g, respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds' theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Ufuk İnce
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Zahra Maryam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| |
Collapse
|