1
|
Li S, Mo K, Du C. Investigating the bacterial cleaning performance on Zr-BMG with LIPSS after ultrasonic vibration assisted cleaning. Proc Inst Mech Eng H 2024:9544119241303307. [PMID: 39663631 DOI: 10.1177/09544119241303307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
High-efficiency and high-quality sterilization technologies for medical materials can significantly reduce iatrogenic infection. This study investigates the synergistic effects of laser-induced periodic surface structures (LIPSS) and ultrasonic cleaning on the removal of bacteria from medical material surfaces. We specifically examined how ultrasonic parameters and structural defects in LIPSS impact the effectiveness of bacterial removal. As an emerging medical metal, Zr-BMG was chosen for the target material. Femtosecond laser processing was employed to create LIPSS with both complete linear arrays and discontinuous linear arrays structures featuring surface defects by adjusting the scanning overlap rate. A high-concentration solution of S. aureus was used for co-cultivation, resulting in a surface bacterial coverage rate exceeding 95%. The study analyzed the synergistic sterilization effect of microstructured surfaces through variations in ultrasonic cleaning power and duration. The results indicated that surfaces with microstructures demonstrated significantly improved bacterial removal following ultrasonic cleaning. The bacterial removal rate was found to be proportional to the ultrasonic vibrator power, and the surface with a LIPSS structure outperformed the discontinuous LIPSS surface in bacterial removal efficiency. Optimal results were achieved with the LIPSS surface after 30 min of cleaning at 100 W ultrasonic power. However, there was minimal difference in bacterial removal between 10 and 30 min at the same power level. This study aims to provide methodological insights and data support for the efficient and high-quality cleaning of medical metal surfaces.
Collapse
Affiliation(s)
- Songlin Li
- Chenzhou Vocational Technical College, ChenZhou, Hunan, China
| | - Kekang Mo
- Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Cezhi Du
- Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong university of technology, Guangzhou, China
| |
Collapse
|
2
|
Todarwal MA, Sancheti RS, Nikume SR, Patel HM, Bendre RS. Anti-Malarial and Multi-Bioactive Co (II), Cu (II) and Ni (II) Salen Complexes: Synthesis, Characterization and Computational Studies. Chem Biodivers 2024; 21:e202400715. [PMID: 38825566 DOI: 10.1002/cbdv.202400715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Herein, we report the anti-malarial, anti-bacterial and anti-inflammatory activities of the N2O2 donor tetradentate salen type ligand and its CoL, NiL, and CuL metal complexes. The synthesized compounds were characterized by various spectroscopic analytical methods. The in-vitro anti-malarial investigations revealed that the complex CuL exhibited equipotency with quinine drug having IC50 value 0.25 μg/mL. The compound L showed significant inhibition of bacterial spp. viz. E. Coli, P. Aeruginosa, and S. Aureus (MIC=12.5-50 μg/mL), while the compound CoL (MIC=12.5 μg/mL) exhibited potency against gram-positive bacteria. In the in-vitro anti-inflammatory study, the compound CuL displayed moderate activity than other tested compounds. The compound CuL showed the highest anti-malarial docking score with enzyme pLDH at -8.12 Kcal/mol. The DFT study also gives authentication of higher antimalarial activity of CuL due to high dipole moment. None of the potent compounds was found cytotoxic towards vero cell lines.
Collapse
Affiliation(s)
- Minakshee A Todarwal
- Department of Chemistry, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, 423101, India
- School of Chemical Sciences, KBC, North Maharashtra University, Jalgaon, 425001, India
| | - Rakesh S Sancheti
- Department of Chemistry, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, 423101, India
| | - Sumit R Nikume
- School of Chemical Sciences, KBC, North Maharashtra University, Jalgaon, 425001, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Institute of Pharmaceutical Education and Research, Shirpur, 425405, India
| | - Ratnamala S Bendre
- School of Chemical Sciences, KBC, North Maharashtra University, Jalgaon, 425001, India
| |
Collapse
|
3
|
Sen S, Ghosh S, Jana A, Jash M, Ghosh S, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Multi-Faceted Antimicrobial Efficacy of a Quinoline-Derived Bidentate Copper(II) Ligand Complex and Its Hydrogel Encapsulated Formulation in Methicillin-Resistant Staphylococcus aureus Inhibition and Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:4142-4161. [PMID: 38770768 DOI: 10.1021/acsabm.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The emergence of antimicrobial resistance, exemplified by methicillin-resistant Staphylococcus aureus (MRSA), poses a grave threat to public health globally. Over time, MRSA has evolved resistance to multiple antibiotics, challenging conventional treatment strategies. The relentless adaptability of MRSA underscores the urgent need for innovative and targeted antimicrobial approaches to combat this resilient pathogen. Ancient knowledge and practices, along with scientific evidence, have established that metallic copper, and its organic coordination complexes can act as potential antibacterial substances. In search of a smart and effective antimicrobial against MRSA, we designed, synthesized, and characterized a bidentate copper(II) ligand complex (SG-Cu) utilizing a comprehensive array of analytical techniques, including ESI-MS, elemental analysis, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and others. Antibacterial efficacy and mechanism of action of the complex were assessed through bacterial growth analyses, bacterial membrane perturbation assays, ROS elicitation assays, and field emission scanning electron microscopy. SG-Cu was found to maintain robust biocompatibility against the mammalian cell lines HEK-293, WI-38, and NIH/3T3. Remarkably, SG-Cu demonstrated significant biofilm disruptive tendency evidenced by the retardation of sliding motility, reduction in slime production, reduction in biofilm viability, and enhanced biofilm eradication, both in vitro and in urinary catheters. In vivo studies on murine excisional wounds, with SG-Cu impregnated in a palmitic acid conjugated NAVSIQ hexapeptide (PA-NV) hydrogel, revealed the sustained release of SG-Cu from the gel matrix, facilitating accelerated wound healing and effective wound disinfection. This multifaceted investigation highlights the potential of SG-Cu as a versatile option for combating MRSA infections and promoting wound healing, solidifying its claim to be developed into a viable therapeutic.
Collapse
Affiliation(s)
- Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
4
|
Shumi G, Demissie TB, Koobotse M, Kenasa G, Beas IN, Zachariah M, Desalegn T. Cytotoxic Cu(II) Complexes with a Novel Quinoline Derivative Ligand: Synthesis, Molecular Docking, and Biological Activity Analysis. ACS OMEGA 2024; 9:25014-25026. [PMID: 38882155 PMCID: PMC11171097 DOI: 10.1021/acsomega.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
The utilization of metallodrugs as a viable alternative to organic molecules has gained significant attention in modern medicine. We hereby report synthesis of new imine quinoline ligand (IQL)-based Cu(II) complexes and evaluation of their potential biological applications. Syntheses of the ligand and complexes were achieved by condensation of 7-chloro-2-hydroxyquinoline-3-carbaldehyde and 2,2'-thiodianiline, followed by complexation with Cu(II) metal ions. The synthesized ligand and complexes were characterized using UV-vis spectroscopy, TGA/DTA, FTIR spectroscopy, 1H and 13C NMR spectroscopy, and pXRD. The pXRD diffractogram analysis revealed that the synthesized ligand and its complexes were polycrystalline systems, with nanolevel average crystallite sizes of 13.28, 31.47, and 11.57 nm for IQL, CuL, and CuL 2 , respectively. The molar conductivity confirmed the nonelectrolyte nature of the Cu(II) complexes. The biological activity of the synthesized ligand and its Cu(II) complexes was evaluated with in vitro assays, to examine anticancer activity against the MCF-7 human breast cancer cell line and antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. The CuL complex had the highest cytotoxic potency against MCF-7 breast cancer cells, with an IC50 of 43.82 ± 2.351 μg/mL. At 100 μg/mL, CuL induced the largest reduction of cancer cell proliferation by 97%, whereas IQL reduced cell proliferation by 53% and CuL 2 by 28%. The minimum inhibitory concentration for CuL was found to be 12.5 μg/mL against the three tested pathogens. Evaluation of antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl revealed that CuL exhibited the highest antioxidant activity with IC50 of 153.3 ± 1.02 μg/mL. Molecular docking results showed strong binding affinities of CuL to active sites of S. aureus, E. coli, and estrogen receptor alpha, indicating its high biological activity compared to IQL and CuL 2 .
Collapse
Affiliation(s)
- Gemechu Shumi
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Taye B Demissie
- Department of Chemistry, University of Botswana, Gaborone P/Bag 00704, Botswana
| | - Moses Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Girmaye Kenasa
- Department of Biology, College of Natural and Computational Science, Wollega University, P.O. Box: 395, Nekemte 251, Ethiopia
| | - Isaac N Beas
- Botswana Institute for Technology Research and Innovation, Maranyane House, Plot No. 50654, Machel Drive, Gaborone Private Bag 0082, Botswana
- Department of Chemical Engineering, University of South Africa, P/Bag X6, Florida, Johannesburg 1710, South Africa
| | - Matshediso Zachariah
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Tegene Desalegn
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
5
|
Singh S, Choudhary M. Unusual Ni⋯Ni interaction in Ni(ii) complexes as potential inhibitors for the development of new anti-SARS-CoV-2 Omicron drugs. RSC Med Chem 2024; 15:895-915. [PMID: 38516589 PMCID: PMC10953495 DOI: 10.1039/d3md00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 03/23/2024] Open
Abstract
Two nickel(ii) coordination complexes [Ni(L)]2(1) and [Ni(L)]n(2) of a tetradentate Schiff base ligand (H2L) derived from 2-hydroxy-1-naphthaldehyde with ethylenediamine were synthesized, designed, and characterized via spectroscopic and single crystal XRD analyses. Both nickel(ii) complexes exhibited unusual Ni⋯Ni interactions and were fully characterized via single-crystal X-ray crystallography. Nickel(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) crystallize in monoclinic and triclinic crystal systems with P21/c and P1̄ space groups, respectively, and revealed square planar geometry around each Ni(ii) ion. The structure of both the complexes have established the existence of a new kind of metal system containing nickel(ii)-nickel(ii) interactions with a square planar-like geometry about the nickel(ii) atoms. Both square planar Ni(ii) complexes were often stacked with relatively short Ni⋯Ni distances. The non-bonded Ni-Ni distance (Ni⋯Ni separation) seems to be 3.356 Å and 3.214 Å from the nickel atoms of [Ni(L)]2(1) and [Ni(L)]n(2), respectively. These distances are shorter than the sum of their van der Waals radii (4.80 Å) but longer than the sum of their covalent radii (2.50 Å), indicating that there is a Ni⋯Ni interaction but not a Ni-Ni bond. The discrete molecules are π-stacked and connected via weak intermolecular interactions (C-H⋯O and C-H⋯N). Cyclic voltammetry measurements were obtained for both the complexes, and their pharmacokinetic and chemoinformatics properties were also explored. Detailed structural analysis and non-covalent supramolecular interactions were investigated using single-crystal structure analysis and computational approaches. Both the unique structures show good inhibition performance for the Omicron spike proteins of the SARS CoV-2 virus. To gain insights into potential SARS-CoV-2 Omicron drugs and find inhibitors against the Omicron variants of SARS-CoV-2, we examined the molecular docking of the nickel(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) with the SARS-CoV-2 Omicron spike protein (PDB ID: 7WK2 and 7WVO). A strong binding was predicted between Ni(ii) coordination complexes [Ni(L)]2(1) and [Ni(L)]n(2) with the SARS-CoV-2 Omicron variant receptor protein through the negative value of binding affinity. Molecular docking of Nil(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) with a DNA duplex (PDB ID: 7D3T) and RNA (PDB ID: 7TDC) binding protein was also studied. Overall, this study suggests that Ni(ii) complexes can be considered as drug candidates against the Omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Chemistry, National Institute of Technology Patna Patna-800005 Bihar India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna Patna-800005 Bihar India
| |
Collapse
|
6
|
Mathur S, Karumban KS, Muley A, Tuti N, Shaji UP, Roy I, Verma A, Kumawat MK, Roy A, Maji S. Chromophore appended DPA-based copper(II) complexes with a diimine motif towards DNA binding and fragmentation studies. Dalton Trans 2024; 53:1163-1177. [PMID: 38105760 DOI: 10.1039/d3dt01864d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mixed ligand copper(II) complexes [Cu(L1)(bpy)](ClO4)21 and [Cu(L2)(bpy)](ClO4)22 (where L1 = 1-(anthracen-9-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine, L2 = 1-(pyren-1-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine and bpy = 2,2'-bipyridine) were synthesised and characterised thoroughly via different analytical and spectroscopic techniques i.e., UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, HRMS and EPR spectroscopy. The molecular structures of the synthesised complexes were obtained using the single-crystal X-ray diffraction technique. Both complexes exhibited penta-coordinated and acquired distorted square pyramidal geometry. The redox behaviour of complexes 1 and 2 was investigated by employing cyclic voltammetry. The DNA binding study was carried out by UV-vis spectrophotometry using double-stranded salmon sperm DNA (ds-ss-DNA). The binding constant (Kb) values of 1 and 2 were 0.11 × 104 M-1 and 1.05 × 104 M-1, respectively, which indicates that 2 has better binding ability than 1. This might be due to the higher conjugative abilities with the extended surface area of the aromatic pyrene ring compared to the anthracene moiety. The fluorescence quenching experiments were also performed with EB bound DNA (EB-DNA) and Stern-Volmer constant (KSV) values were calculated as 1.23 × 105 M-1 and 1.39 × 105 M-1 for 1 and 2, respectively, suggesting that 2 showed stronger interaction with ss-DNA than 1. The molecular docking data support the DNA-binding studies, with the sites and mode of interactions against B-DNA varying with 1 and 2. Evaluation of the DNA binding properties of the complexes to linearized plasmid DNA indicated that 2 had modest DNA binding properties, which is a pre-requisite for a genotoxic agent. The effect of 1 and 2 on cell survival was analysed using HeLa cells by MTT assay and it was observed that the IC50 values of 1 and 2 were 43.7 μM and 18.6 μM, respectively. Our study paves the way for the designing of bio-inspired novel mixed metal complexes, which shows promising results for further exploration of molecular and mechanistic studies towards the development of non-platinum based economical metallodrugs.
Collapse
Affiliation(s)
- Shobhit Mathur
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Kalai Selvan Karumban
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Nikhil Tuti
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | | | - Indrajit Roy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Anushka Verma
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Manoj Kumar Kumawat
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Anindya Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|