1
|
Sharma R, Modi U, Kumar R, Sharma C, Srivastav AK, Bhatia D, Solanki R. Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy. BIOMATERIALS ADVANCES 2025; 171:214235. [PMID: 39978287 DOI: 10.1016/j.bioadv.2025.214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Cancer remains a significant global health challenge, driving the development of advanced platforms for highly targeted and efficient drug delivery. Early-stage nanocarriers, such as synthetic polymeric and inorganic materials, face limitations in biocompatibility and biodegradability. In contrast, bioinspired nanocarriers derived from natural biomacromolecules mimic biological processes and present a promising alternative due to their biocompatibility, biodegradability and non-toxicity. The effectiveness of these drug delivery systems is influenced by factors such as size, shape, surface properties, morphology, functionalization, and preparation methods. Various biomacromolecule-inspired nanocarriers such as protein-based, lipid-based, carbohydrate-based and nucleic acid-based are now at the forefront of research. This review highlights the properties, advantages and limitations of different bioinspired materials. We also explore cutting-edge approaches for cancer therapy using these nanocarriers with recent in-vitro, in-vivo and patent evidence. Finally, we address the challenges and potential solutions associated with bioinspired nanocarriers, proposing future directions. Overall, this review explores nature-inspired drug delivery systems that have paved the way for advancements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Rahul Kumar
- Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Chirag Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | | | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
2
|
Stukan I, Żuk A, Pukacka K, Mierzejewska J, Pawłowski J, Kowalski B, Dąbkowska M. Wolf in Sheep's Clothing: Taming Cancer's Resistance with Human Serum Albumin? Int J Nanomedicine 2025; 20:3493-3525. [PMID: 40125439 PMCID: PMC11930253 DOI: 10.2147/ijn.s500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Human serum albumin (HSA) has emerged as a promising carrier for nanodrug delivery, offering unique structural properties that can be engineered to overcome key challenges in cancer treatment, especially resistance to chemotherapy. This review focuses on the cellular uptake of albumin-based nanoparticles and the modifications that enhance their ability to bypass resistance mechanisms, particularly multidrug resistance type 1 (MDR1), by improving targeting to cancer cells. In our unique approach, we integrate the chemical properties of albumin, its interactions with cancer cells, and surface modifications of albumin-based delivery systems that enable to bypass resistance mechanisms, particularly those related to MDR1, and precisely target receptors on cancer cells to improve treatment efficacy. We discuss that while well-established albumin receptors such as gp60 and gp18/30 are crucial for cellular uptake and transcytosis, their biology remains underexplored, limiting their translational potential. Additionally, we explore the potential of emerging targets, such as cluster of differentiation 44 (CD44), cluster of differentiation (CD36) and transferrin receptor TfR1, as well as the advantages of using dimeric forms of albumin (dHSA) to further enhance delivery to resistant cancer cells. Drawing from clinical examples, including the success of albumin-bound paclitaxel (Abraxane) and new formulations like Pazenir and Fyarro (for Sirolimus), we identify gaps in current knowledge and propose strategies to optimize albumin-based systems. In conclusion, albumin-based nanoparticles, when tailored with appropriate modifications, have the potential to bypass multidrug resistance and improve the targeting of cancer cells. By enhancing albumin's ability to efficiently deliver therapeutic agents, these carriers represent a promising approach to addressing one of oncology's most persistent challenges, with substantial potential to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Iga Stukan
- Department of General Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Żuk
- Independent Laboratory of Community Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kamila Pukacka
- Department of Pharmaceutical Technology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Julia Mierzejewska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Pawłowski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
3
|
Theivendren P, Kunjiappan S, Pavadai P, Ravi K, Murugavel A, Dayalan A, Santhana Krishna Kumar A. Revolutionizing Cancer Immunotherapy: Emerging Nanotechnology-Driven Drug Delivery Systems for Enhanced Therapeutic Efficacy. ACS MEASUREMENT SCIENCE AU 2025; 5:31-55. [PMID: 39991031 PMCID: PMC11843507 DOI: 10.1021/acsmeasuresciau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025]
Abstract
Cancer immunotherapy is an innovative way of treating cancer by stimulating individual cells to overcome cancer. Widespread biomedical studies were carried out with the aim of exploring immunotherapy cancer therapeutics, and this review spotlights some mechanisms in which it was developed, namely immune checkpoint inhibitors (E.G PD-1/PD-L1, CTLA-4), adoptive cell therapy (e.g., CAR T-cell therapy), and cancer vaccines. Although it has shown clinical benefit in a number of cancer types, including melanoma and non-small-cell lung cancer, several challenges have dampened enthusiasm for this approach, from the differing patient response rates to toxicities. Nanotechnology in drug delivery systems must play a role in overcoming the same. Nanotechnology enables increased specificity and controlled drug release, improved solubility and bioavailability, can treat the tumor specifically, and localized drug delivery at the disease site decreases systemic toxicity. The review also features advances in the construction of lipid-based, polymeric, and inorganic nanoparticles that improve drug stability and allow the delivery of cotherapeutic agents. Nanotechnology-based delivery systems can be used alone or in combination with immunotherapy to assist in improving the immune response, gaining access to the tumor microenvironment, and overcoming biological barriers. Thus, the nano-DDS were both safe and effective in preclinical studies, and ongoing clinical trials have shown that they are capable of increasing the therapeutic index of anticancer drugs. Lastly, the review also discusses current challenges and regulatory issues in advancing these technologies and highlights the importance of further research to devise appropriate methodology for efficient functionalization of nanotechnology for individualized cancer solutions in cancer treatment.
Collapse
Affiliation(s)
- Panneerselvam Theivendren
- Department
of Pharmaceutical Chemistry, Swamy Vivekanandha
College of Pharmacy, Elayampalayam 637205, Namakkal, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department
of Biotechnology, Kalasalingam Academy of
Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Parasuraman Pavadai
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M. S. R. Nagar, Bengaluru 560054, Karnataka, India
| | - Kaveena Ravi
- Department
of Pharmaceutics, Swamy Vivekananda College
of Pharmacy, Elayampalayam 637205, Namakkal, Tamil Nadu, India
| | - Anusuya Murugavel
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Avinash Dayalan
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - A. Santhana Krishna Kumar
- Department
of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan
- Department
of Chemistry, Saveetha School of Engineering, Saveetha Institute of
Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
4
|
Mathavan S, Tam YJ, Mustaffa KMF, Tye GJ. Aptamer based immunotherapy: a potential solid tumor therapeutic. Front Immunol 2025; 16:1536569. [PMID: 40034705 PMCID: PMC11873091 DOI: 10.3389/fimmu.2025.1536569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Aptamer-based immunotherapy can be a new hope for treating solid tumors with personalized and specific approaches toward cancer therapies. Aptamers are small synthetic single-stranded nucleic acids that may bring in a paradigm shift in treating solid tumors. These are highly selective drugs applied in cellular immunotherapy, cytokine modulation, and immune checkpoint suppression. This review provides an overview of the recent advances in aptamer-based technologies with specific key clinical trials involving AON-D21 and AM003. Aptamers are potently active in immune regulation and tumor targeting. However, aptamer stability and bioavailability are seriously compromised by the issues relating to renal clearance and rapid degradation through nucleases. The latter are reviewed here along with novel improvements, some of which involve chemical modifications that greatly enhance stability and prolong the circulation time; exemplary such modifications are PEGylation, cholesterol conjugation, and the synthesis of circular nucleic acids. The regulatory aspect is also crucial. For example, in addition to specific strategies to prevent drug-drug interactions (DDIs) in cancer remediation medications, this paper underscores the need of risk assessment, particularly because of immunogenicity and organ failure. The use of aptamers is expanded by the development of SOMAmers, X-aptamers, and bioinformatics. To make aptamer-based drugs a major part of cancer treatment, future research should concentrate more on resolving existing issues and expanding their beneficial uses.
Collapse
Affiliation(s)
- Sarmilah Mathavan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Minden, Pulau Pinang, Malaysia
- Biogenes Technologies Sdn Bhd, Jalan Maklumat, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yew Joon Tam
- Biogenes Technologies Sdn Bhd, Jalan Maklumat, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Minden, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
5
|
Zhang Z, Zhang T, Li Z, Zeng Z. Construction of anticancer drug incorporated aptamer-functionalized cationic β-lactoglobulin: induction of cell cycle arrest and apoptosis in colorectal cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:351-370. [PMID: 39410825 DOI: 10.1080/09205063.2024.2402142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/29/2024] [Indexed: 02/12/2025]
Abstract
Nanoscale drug delivery systems that are both multifunctional and targeted have been developed using proteins as a basis, thanks to their attractive biomacromolecule properties. A novel nanocarrier, aptamer (AS1411)-conjugated β-lactoglobulin/poly-l-lysine (BLG/Ap/PL) nanoparticles, was developed in this study. To this unique formulation, the as-prepared nanocarrier blends the distinctive features of an aptamer as a chemotherapeutic targeting agent with those of protein nanocarriers. By loading cabazitaxel (CTX) onto the nanocarriers, the therapeutic potential of BLG/Ap/PL could be demonstrated. The CTX-loaded BLG/Ap/PL (CTX@BLG/Ap/PL) showed a regulated drug release profile in an acidic milieu, which could improve therapeutic efficacy in cancer cells and have a high drug encapsulation efficacy of up to 93%. However, compared to free CTX, CTX@BLG/Ap/PL killed colorectal HCT116 cancer cells with a higher efficacy at 24 and 48 h. Further investigation confirms the apoptosis by acridine orange and ethidium bromide (AO/EB), and DAPI staining confirms the morphological changes, chromatin condensation, and membrane blebbing in the treated cell through flow cytometry displayed the release of higher percentages of apoptosis. Cell cycle analysis revealed that CTX@BLG/Ap/PL induced sub-G1 and G2/M phase (apoptosis) at 24 and 48 h. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that CTX@BLG/Ap/PL induces apoptosis in HCT116 cells. Overall, this study proved that CTX@BLG/Ap/PL had several advantages over free chemotherapeutic drugs and showed promise as a solution to the clinical problems associated with targeted antitumor drug delivery systems.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianran Zhang
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zimeng Li
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijun Zeng
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Boonkaew S, Teodori L, Vendelbo MH, Kjems J, Ferapontova EE. Nanobodies' duo facilitates ultrasensitive serum HER-2/neu immunoassays via enhanced avidity interactions. Anal Chim Acta 2025; 1335:343472. [PMID: 39643321 DOI: 10.1016/j.aca.2024.343472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Existing liquid biopsy assays for protein biomarkers of cancer are mostly based on antibodies (Ab) contributing unfavorably to their high cost. Easy to express and modify in vitro, nanobodies may be a cost-effective alternative to Ab. RESULTS We show that serum HER-2/neu, a biomarker and target of aggressive HER-2/neu(+) cancers, can be accurately detected in a 1.2 h electrochemical cellulase-linked sandwich nanobody/aptamer assay on magnetic beads. Using a single nanobody receptor, 2Rs15d or 2Rb17c, reduces immunoassay's sensitivity by 35%-26 %. A combination of two nanobodies as a duo-receptor recovers the sensitivity of the enzyme-linked nanobody/aptamer-sorbent assay (ELNASA) to 11.9 ± 2.8 μC fM-1, due to the avidity effects making the nanobodies-duo binding properties comparable to those of Ab. Down to 0.1 fM HER-2/neu was detected by ELNASA in serum samples, with no interference from other blood-circulating proteins. In a 30 healthy-volunteers trial, ELNASA more accurately than optical ELISA assayed serum HER-2/neu. SIGNIFICANCE ELNASA performance rivals that of ELISA, yet estimated to be at least 200 times cheaper, due to the lower cost of nanobodies production, and may be better suited for routine clinical analysis of HER-2/neu, particularly, in low- and middle-income settings with limited resources. The ELNASA approach is generic and may be adapted for specific and ultrasensitive analysis of other blood-circulating proteins.
Collapse
Affiliation(s)
- Suchanat Boonkaew
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus C, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
7
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
8
|
Biggs MA, Das A, Goncalves BG, Murray ME, Frantzeskos SA, Hunt HL, Phan CAN, Banerjee IA. Developing New Peptides and Peptide-Drug Conjugates for Targeting the FGFR2 Receptor-Expressing Tumor Cells and 3D Spheroids. Biomimetics (Basel) 2024; 9:515. [PMID: 39329537 PMCID: PMC11429203 DOI: 10.3390/biomimetics9090515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
In this work, we utilized a biomimetic approach for targeting KATO (III) tumor cells and 3D tumoroids. Specifically, the binding interactions of the bioactive short peptide sequences ACSAG (A-pep) and LPHVLTPEAGAT (L-pep) with the fibroblast growth factor receptor (FGFR2) kinase domain was investigated for the first time. Both peptides have been shown to be derived from natural resources previously. We then created a new fusion trimer peptide ACSAG-LPHVLTPEAGAT-GASCA (Trimer-pep) and investigated its binding interactions with the FGFR2 kinase domain in order to target the fibroblast growth factor receptor 2 (FGFR2), which is many overexpressed in tumor cells. Molecular docking and molecular dynamics simulation studies revealed critical interactions with the activation loop, hinge and glycine-rich loop regions of the FGFR2 kinase domain. To develop these peptides for drug delivery, DOX (Doxorubicin) conjugates of the peptides were created. Furthermore, the binding of the peptides with the kinase domain was further confirmed through surface plasmon resonance studies. Cell studies with gastric cancer cells (KATO III) revealed that the conjugates and the peptides induced higher cytotoxicity in the tumor cells compared to normal cells. Following confirmation of cytotoxicity against tumor cells, the ability of the conjugates and the peptides to penetrate 3D spheroids was investigated by evaluating their permeation in co-cultured spheroids grown with KATO (III) and colon tumor-associated fibroblasts (CAFs). Results demonstrated that Trimer-pep conjugated with DOX showed the highest permeation, while the ACSAG conjugate also demonstrated reasonable permeation of the drug. These results indicate that these peptides may be further explored and potentially utilized to create drug conjugates for targeting tumor cells expressing FGFR2 for developing therapeutics.
Collapse
Affiliation(s)
- Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Molly E Murray
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Sophia A Frantzeskos
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Chau Ahn N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| |
Collapse
|
9
|
Kumar S, Arwind DA, Kumar B H, Pandey S, Nayak R, Vithalkar MP, Kumar N, Pai KSR. Inhibition of STAT3: A promising approach to enhancing the efficacy of chemotherapy in medulloblastoma. Transl Oncol 2024; 46:102023. [PMID: 38852276 PMCID: PMC11220551 DOI: 10.1016/j.tranon.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dube Aakash Arwind
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India.
| |
Collapse
|
10
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
11
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
12
|
Berzal-Herranz A, Romero-López C. Aptamers' Potential to Fill Therapeutic and Diagnostic Gaps. Pharmaceuticals (Basel) 2024; 17:105. [PMID: 38256938 PMCID: PMC10818422 DOI: 10.3390/ph17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
More than 30 years ago, in 1990, three independent research groups published several papers demonstrating that genetics could be performed in vitro in the absence of living organisms or cells [...].
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| |
Collapse
|
13
|
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C, Amero P. Aptamers as Potential Therapeutic Tools for Ovarian Cancer: Advancements and Challenges. Cancers (Basel) 2023; 15:5300. [PMID: 37958473 PMCID: PMC10647731 DOI: 10.3390/cancers15215300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.
Collapse
Affiliation(s)
- Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| |
Collapse
|