1
|
Wang G, Ryu K, Dong Z, Hu Y, Ke Y, Dong Z, Long Y. Micro/nanofabrication of heat management materials for energy-efficient building facades. MICROSYSTEMS & NANOENGINEERING 2024; 10:115. [PMID: 39183234 PMCID: PMC11345463 DOI: 10.1038/s41378-024-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 08/27/2024]
Abstract
Advanced building facades, which include windows, walls, and roofs, hold great promise for reducing building energy consumption. In recent decades, the management of heat transfer via electromagnetic radiation between buildings and outdoor environments has emerged as a critical research field aimed at regulating solar irradiation and thermal emission properties. Rapid advancements have led to the widespread utilization of advanced micro/nanofabrication techniques. This review provides the first comprehensive summary of fabrication methods for heat management materials with potential applications in energy-efficient building facades, with a particular emphasis on recent developments in fabrication processing and material property design. These methods include coating, vapor deposition, nanolithography, printing, etching, and electrospinning. Furthermore, we present our perspectives regarding their advantages and disadvantages and our opinions on the opportunities and challenges in this field. This review is expected to expedite future research by providing information on the selection, design, improvement, and development of relevant fabrication techniques for advanced materials with energy-efficient heat management capabilities.
Collapse
Affiliation(s)
- Guanya Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Keunhyuk Ryu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.
- School of Interdisciplinary Studies, Lingnan University, Tuen Mun, New Territories, 999077, Hong Kong SAR, China.
| | - ZhiLi Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Yi Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China.
| |
Collapse
|
2
|
Houimi A, Basyooni-M Kabatas MA, Yilmaz M, Eker YR. MoO 3 nanowire growth on VO 2/WO 3 for thermochromic applications. Phys Chem Chem Phys 2024; 26:5548-5557. [PMID: 38284209 DOI: 10.1039/d3cp05942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
This study explores the structural, electronic, and optical properties of sandwich-structured thin films composed of WO3, MoWO3, and MoO3 as window layers on VO2/WO3via a physical vapor deposition method. Morphological analysis demonstrates the evolution of distinct nanowires, offering insights into the lattice strain of the VO2 layer toward high-performance thermochromatic devices. Temperature-dependent sheet resistivity is investigated, showcasing significant improvements in conductivity for samples with MoO3 as a window layer. The electrical and optical properties of the MoO3/VO2/WO3 device showed a phase transition temperature (Tc) of 36.8 °C, a transmittance luminous (Tlum) of 54.57%, and a solar modulation ability (ΔTsol) of 12.43. This comprehensive analysis contributes to understanding the growth of nanowires on multi-layered thin films, offering valuable insights into potential applications in bright windows.
Collapse
Affiliation(s)
- Amina Houimi
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey.
- UNAM, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 068000, Turkey
| | - Mohamed A Basyooni-M Kabatas
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey.
- Dynamics of Micro and Nano Systems Group, Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
- Solar Research Laboratory, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics, 11421 Cairo, Egypt
| | - Mucahit Yilmaz
- Department of Fundamental Science, Necmettin Erbakan University, Konya, Turkey
| | - Yasin Ramazan Eker
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey.
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
3
|
Zhang C, Gunes O, Wen SJ, Yang Q, Kasap S. Effect of Substrate Temperature on the Structural, Optical and Electrical Properties of DC Magnetron Sputtered VO 2 Thin Films. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7849. [PMID: 36363441 PMCID: PMC9657141 DOI: 10.3390/ma15217849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This study focuses on the effect of the substrate temperature (TS) on the quality of VO2 thin films prepared by DC magnetron sputtering. TS was varied from 350 to 600 °C and the effects on the surface morphology, microstructure, optical and electrical properties of the films were investigated. The results show that TS below 500 °C favors the growth of V2O5 phase, whereas higher TS (≥500 °C) facilitates the formation of the VO2 phase. Optical characterization of the as-prepared VO2 films displayed a reduced optical transmittance (T˜) across the near-infrared region (NIR), reduced phase transition temperature (Tt), and broadened hysteresis width (ΔH) through the phase transition region. In addition, a decline of the luminous modulation (ΔT˜lum) and solar modulation (ΔT˜sol) efficiencies of the as-prepared films have been determined. Furthermore, compared with the high-quality films reported previously, the electrical conductivity (σ) as a function of temperature (T) reveals reduced conductivity contrast (Δσ) between the insulating and metallic phases of the VO2 films, which was of the order of 2. These outcomes indicated the presence of defects and unrelaxed lattice strain in the films. Further, the comparison of present results with those in the literature from similar works show that the preparation of high-quality films at TS lower than 650 °C presents significant challenges.
Collapse
Affiliation(s)
- Chunzi Zhang
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ozan Gunes
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Shi-Jie Wen
- Cisco Systems Inc., 170 West Tasman Drive, San Jose, CA 95134, USA
| | - Qiaoqin Yang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Safa Kasap
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
4
|
Synthesis, Characterizations, and Thermochromic Properties of VO2 Particles Grafted with PSS : PEDOT. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/1866280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vanadium dioxide (VO2) particles were modified by grafting with poly(styrene sulfonate) (PSS) and poly(3,4-ethylenedioxythiophene) (PEDOT) via surface-initiated atom transfer radical polymerization (SI-ATRP). Critical transition temperature (
) of the modified VO2 ranging between 77 and 79°C was obtained. After mixing with acrylic-based emulsion, dispersion of the VO2 particles in the polymer matrix was significantly improved. The visible light transmittance through the composite films above 75% was maintained if a concentration of the modified VO2 particles loaded into acrylic polymer film was no greater than 1.0 wt%. The NIR transmittance through the acrylic/VO2@PSS : PEDOT also dropped by 9-10%, compared with that of the pure acrylic film (without any particles). Finally, glass substrates coated with the acrylic/VO2@PSS : PEDOT composite films could reduce the temperature inside a model house by 5-6°C, compared with that of the control system (pure acrylic coating film without VO2 particles). Overall, this work demonstrated that it was possible to improve the dispersion of VO2 particles in polymer films without sacrificing its NIR shielding ability by grafting the surface of VO2 particles with PSS : PEDOT chains, while providing the optimum grafting density and particle loading.
Collapse
|
5
|
Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. N. Kokila
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - C. Mallikarjunaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | | |
Collapse
|
6
|
Zhang H, Liu W, Cao D, Cheng D. Carbon-based material-supported single-atom catalysts for energy conversion. iScience 2022; 25:104367. [PMID: 35620439 PMCID: PMC9127225 DOI: 10.1016/j.isci.2022.104367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, single-atom catalysts (SACs) with unique electronic structure and coordination environment have attracted much attention due to its maximum atomic efficiency in the catalysis fields. However, it is still a great challenge to rationally regulate the coordination environments of SACs and improve the loading of metal atoms for SACs during catalysis progress. Generally, carbon-based materials with excellent electrical conductivity and large specific surface area are widely used as catalyst supports to stabilize metal atoms. Meanwhile, carbon-based material-supported SACs have also been extensively studied and applied in various energy conversion reactions, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Herein, rational synthesis methods and advanced characterization techniques were introduced and summarized in this review. Then, the theoretical design strategies and construction methods for carbon-based material-supported SACs in electrocatalysis applications were fully discussed, which are of great significance for guiding the coordination regulation and improving the loading of SACs. In the end, the challenges and future perspectives of SACs were proposed, which could largely contribute to the development of single atom catalysts at the turning point.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Wenhao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
7
|
Recent Advances in Fabrication of Flexible, Thermochromic Vanadium Dioxide Films for Smart Windows. NANOMATERIALS 2021; 11:nano11102674. [PMID: 34685109 PMCID: PMC8538595 DOI: 10.3390/nano11102674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Monoclinic-phase VO2 (VO2(M)) has been extensively studied for use in energy-saving smart windows owing to its reversible insulator–metal transition property. At the critical temperature (Tc = 68 °C), the insulating VO2(M) (space group P21/c) is transformed into metallic rutile VO2 (VO2(R) space group P42/mnm). VO2(M) exhibits high transmittance in the near-infrared (NIR) wavelength; however, the NIR transmittance decreases significantly after phase transition into VO2(R) at a higher Tc, which obstructs the infrared radiation in the solar spectrum and aids in managing the indoor temperature without requiring an external power supply. Recently, the fabrication of flexible thermochromic VO2(M) thin films has also attracted considerable attention. These flexible films exhibit considerable potential for practical applications because they can be promptly applied to windows in existing buildings and easily integrated into curved surfaces, such as windshields and other automotive windows. Furthermore, flexible VO2(M) thin films fabricated on microscales are potentially applicable in optical actuators and switches. However, most of the existing fabrication methods of phase-pure VO2(M) thin films involve chamber-based deposition, which typically require a high-temperature deposition or calcination process. In this case, flexible polymer substrates cannot be used owing to the low-thermal-resistance condition in the process, which limits the utilization of flexible smart windows in several emerging applications. In this review, we focus on recent advances in the fabrication methods of flexible thermochromic VO2(M) thin films using vacuum deposition methods and solution-based processes and discuss the optical properties of these flexible VO2(M) thin films for potential applications in energy-saving smart windows and several other emerging technologies.
Collapse
|
8
|
Zou W, Li Z, Wang Z, Sun D, Zhang P. Poplar-based thermochromic composites that change colour at 38 °C to 46 °C. Sci Rep 2021; 11:16865. [PMID: 34413331 PMCID: PMC8377062 DOI: 10.1038/s41598-021-95274-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
The red thermochromic dye (R-TD) is the tetradecanoic acid tetradecyl ester (C28H56O2) and methyl red (C15H15N3O2) mixture that has better permeability enabling its infiltration into wood and better thermochromic properties changing its colour at above 30 °C after about 0.5 min. Thicker poplar-based thermochromic composite specimens (R-PTC, thickness: 5.0 mm) were prepared by filling the R-TD into pre-treated poplar veneer (thickness: 5.0 mm) thus allowing better penetration after pre-treatment. After R-TD infiltration, the R-PTC samples were covered by polypropylene wax for preventing R-TD from overflowing from R-PTC under the action of phase-change temperature. This R-PTC, whose colour can change from light-red to dark-red at 38 °C to 46 °C, can recover to light-red at below 38 °C after about 14 h, and the peak of colour change is at about 42 °C. R-PTC will be suitable for materials used in thermochromic furniture that can indicate the surface temperature to potential users, thus allowing assessment of likely scalded pain when used the furniture.
Collapse
Affiliation(s)
- Weihua Zou
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha, 410004, China.
| | - Zimu Li
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha, 410004, China
| | - Zhangheng Wang
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha, 410004, China
| | - Delin Sun
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha, 410004, China.
| | - Pingfang Zhang
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha, 410004, China
| |
Collapse
|
9
|
Abstract
Thickness dramatically affects the functionality of coatings. Accordingly, the techniques in use to determine the thickness are of utmost importance for coatings research and technology. In this review, we analyse some of the most appropriate methods for determining the thickness of metallic coatings. In doing so, we classify the techniques into two categories: (i) destructive and (ii) non-destructive. We report on the peculiarity and accuracy of each of these methods with a focus on the pros and cons. The manuscript also covers practical issues, such as the complexity of the procedure and the time required to obtain results. While the analysis focuses most on metal coatings, many methods are also applicable to films of other materials.
Collapse
|
10
|
Vernardou D. Special Issue: Advances in Chemical Vapor Deposition. MATERIALS 2020; 13:ma13184167. [PMID: 32961715 PMCID: PMC7560419 DOI: 10.3390/ma13184167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/05/2022]
Abstract
Pursuing a scalable production methodology for materials and advancing it from the laboratory to industry is beneficial to novel daily-life applications. From this perspective, chemical vapor deposition (CVD) offers a compromise between efficiency, controllability, tunability and excellent run-to-run repeatability in the coverage of monolayer on substrates. Hence, CVD meets all the requirements for industrialization in basically everything including polymer coatings, metals, water-filtration systems, solar cells and so on. The Special Issue “Advances in Chemical Vapor Deposition” has been dedicated to giving an overview of the latest experimental findings and identifying the growth parameters and characteristics of perovskites, TiO2, Al2O3, VO2 and V2O5 with desired qualities for potentially useful devices.
Collapse
Affiliation(s)
- Dimitra Vernardou
- Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 710 04 Heraklion, Greece; ; Tel.: +30-2810-379631
- Center of Materials Technology and Photonics, School of Engineering, Hellenic Mediterranean University, 710 04 Heraklion, Greece
| |
Collapse
|
11
|
Zhou J, Xie M, Ji H, Cui A, Ye Y, Jiang K, Shang L, Zhang J, Hu Z, Chu J. Mixed-Dimensional Van der Waals Heterostructure Photodetector. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18674-18682. [PMID: 32208640 DOI: 10.1021/acsami.0c01076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Van der Waals (vdW) heterostructures, integrated two-dimensional (2D) materials with various functional materials, provide a distinctive platform for next-generation optoelectronics with unique flexibility and high performance. However, exploring the vdW heterostructures combined with strongly correlated electronic materials is hitherto rare. Herein, a novel temperature-sensitive photodetector based on the GaSe/VO2 mixed-dimensional vdW heterostructure is discovered. Compared with previous devices, our photodetector exhibits excellent enhanced performance, with an external quantum efficiency of up to 109.6% and the highest responsivity (358.1 mA·W-1) under a 405 nm laser. Interestingly, we show that the heterostructure overcomes the limitation of a single material under the interaction between VO2 and GaSe, where the photoresponse is highly sensitive to temperature and can be further vanished at the critical value. The metal-insulator transition of VO2, which controls the peculiar band-structure evolution across the heterointerface, is demonstrated to manipulate the photoresponse variation. This study enables us to elucidate the method of manipulating 2D materials by strongly correlated electronic materials, paving the way for developing high-performance and special optoelectronic applications.
Collapse
Affiliation(s)
- Jiaoyan Zhou
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Mingzhang Xie
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Huan Ji
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Anyang Cui
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Ye
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jinzhong Zhang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
| | - Junhao Chu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Zhou J, Xie M, Cui A, Zhou B, Jiang K, Shang L, Hu Z, Chu J. Manipulating Behaviors from Heavy Tungsten Doping on Interband Electronic Transition and Orbital Structure Variation of Vanadium Dioxide Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30548-30557. [PMID: 30105904 DOI: 10.1021/acsami.8b09909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vanadium dioxide (VO2) with a metal-insulator transition (MIT) has been supposed as a candidate for optoelectronic devices. However, the MIT temperature ( TMIT) above room temperature limits its application scope. Here, high-quality V1- xW xO2 films have been prepared by pulsed laser deposition. On the basis of temperature-dependent transmittance and Raman spectra, it was found that TMIT increases from 241 to 279 K, when increasing the doping concentration in the range of 0.16 ≤ x ≤ 0.20. The interband electronic transitions and orbital structures of V1- xW xO2 films have been investigated via fitting transmittance spectra. Moreover, with the aid of first-principles calculations, an effective orbital theory has been proposed to explain the unique phenomenon. When the W doping concentration increases, the π* and dII orbitals shift toward the π orbital. Meanwhile, the energy gap between the π* and dII orbitals decreases at the insulator state. It indicates that the bandwidth is narrowed, which impedes MIT. In addition, the overlap of the π* and dII orbitals increases at the metal state, and more doping electrons occupy the π* orbital induced by increasing W doping concentration. It manifests that the Mott insulating state becomes more stable, which further improves TMIT. The present work provides a feasible approach to tune TMIT via orbital variation and can be helpful in developing the potential VO2-based optoelectronic devices.
Collapse
Affiliation(s)
- Jiaoyan Zhou
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
| | - Mingzhang Xie
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
| | - Anyang Cui
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
| | - Bin Zhou
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
| | - Kai Jiang
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
| | - Liyan Shang
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
| | - Zhigao Hu
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Junhao Chu
- Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
13
|
Drosos C, Vernardou D. Advancements, Challenges and Prospects of Chemical Vapour Pressure at Atmospheric Pressure on Vanadium Dioxide Structures. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E384. [PMID: 29510593 PMCID: PMC5872963 DOI: 10.3390/ma11030384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 11/16/2022]
Abstract
Vanadium (IV) oxide (VO₂) layers have received extensive interest for applications in smart windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially competitive because of its simplicity when performed at atmospheric pressure (APCVD). APCVD's success has shown that it is possible to create tough and stable materials in which their stoichiometry may be precisely controlled. Initially, we give a brief overview of the basic processes taking place during this procedure. Then, we present recent progress on experimental procedures for isolating different polymorphs of VO₂. We outline emerging techniques and processes that yield in optimum characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO₂ by APCVD.
Collapse
Affiliation(s)
| | - Dimitra Vernardou
- Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete, Greece.
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1527, Vassilika Vouton, 711 10 Heraklion, Crete, Greece.
| |
Collapse
|
14
|
X-ray Microanalysis of Precious Metal Thin Films: Thickness and Composition Determination. COATINGS 2018. [DOI: 10.3390/coatings8020084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|