1
|
Ma C, Cui S, Xu R. Developments of Fms-like Tyrosine Kinase 3 Inhibitors as Anticancer Agents for AML Treatment. Curr Med Chem 2024; 31:4657-4686. [PMID: 38204232 DOI: 10.2174/0109298673277543231205072556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated gene in acute myeloid leukemia. As a receptor tyrosine kinase (RTK), FLT3 plays a role in the proliferation and differentiation of hematopoietic stem cells. As the most frequent molecular alteration in AML, FLT3 has drawn the attention of many researchers, and a lot of small molecule inhibitors targeting FLT3 have been intensively investigated as potential drugs for AML therapy. METHODS In this paper, PubMed and SciFinder® were used as a tool; the publications about "FLT3 inhibitor" and "Acute myeloid leukemia" were surveyed from 2014 to the present with an exclusion of those published as patents. RESULTS In this study, the structural characterization and biological activities of representative FLT3 inhibitors were summarized. The major challenges and future directions for further research are discussed. CONCLUSION Recently, numerous FLT3 inhibitors have been discovered and employed in FLT3-mutated AML treatment. In order to overcome the drug resistance caused by FLT3 mutations, screening multitargets FLT3 inhibitors has become the main research direction. In addition, the emergence of irreversible FLT3 inhibitors also provides new ideas for discovering new FLT3 inhibitors.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Jinan 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Zavorka Thomas ME, Lu X, Talebi Z, Jeon JY, Buelow DR, Gibson AA, Uddin ME, Brinton LT, Nguyen J, Collins M, Lodi A, Sweeney SR, Campbell MJ, Sweet DH, Sparreboom A, Lapalombella R, Tiziani S, Baker SD. Gilteritinib Inhibits Glutamine Uptake and Utilization in FLT3-ITD-Positive AML. Mol Cancer Ther 2021; 20:2207-2217. [PMID: 34518298 DOI: 10.1158/1535-7163.mct-21-0071] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy associated with frequent relapse and poor overall survival. The tyrosine kinase inhibitor gilteritinib is approved for the treatment of relapse/refractory AML with FLT3 mutations, yet its mechanism of action is not completely understood. Here, we sought to identify additional therapeutic targets that can be exploited to enhance gilteritinib's antileukemic effect. Based on unbiased transcriptomic analyses, we identified the glutamine transporter SNAT1 (SLC38A1) as a novel target of gilteritinib that leads to impaired glutamine uptake and utilization within leukemic cells. Using metabolomics and metabolic flux analyses, we found that gilteritinib decreased glutamine metabolism through the TCA cycle and cellular levels of the oncometabolite 2-hydroxyglutarate. In addition, gilteritinib treatment was associated with decreased ATP production and glutathione synthesis and increased reactive oxygen species, resulting in cellular senescence. Finally, we found that the glutaminase inhibitor CB-839 enhanced antileukemic effect of gilteritinib in ex vivo studies using human primary FLT3-ITD-positive AML cells harboring mutations in the enzyme isocitrate dehydrogenase, which catalyzes the oxidative decarboxylation of isocitrate, producing α-ketoglutarate. Collectively, this work has identified a previously unrecognized, gilteritinib-sensitive metabolic pathway downstream of SLC38A1 that causes decreased glutaminolysis and disruption of redox homeostasis. These findings provide a rationale for the development and therapeutic exploration of targeted combinatorial treatment strategies for this subset of relapse/refractory AML.
Collapse
Affiliation(s)
- Megan E Zavorka Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xiyuan Lu
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Daelynn R Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Lindsey T Brinton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Julie Nguyen
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Meghan Collins
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Alessia Lodi
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Shannon R Sweeney
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Douglas H Sweet
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Stefano Tiziani
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
3
|
Cho H, Shin I, Yoon H, Jeon E, Lee J, Kim Y, Ryu S, Song C, Kwon NH, Moon Y, Kim S, Kim ND, Choi HG, Sim T. Identification of Thieno[3,2- d]pyrimidine Derivatives as Dual Inhibitors of Focal Adhesion Kinase and FMS-like Tyrosine Kinase 3. J Med Chem 2021; 64:11934-11957. [PMID: 34324343 DOI: 10.1021/acs.jmedchem.1c00459] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focal adhesion kinase (FAK) is overexpressed in highly invasive and metastatic cancers. To identify novel FAK inhibitors, we designed and synthesized various thieno[3,2-d]pyrimidine derivatives. An intensive structure-activity relationship (SAR) study led to the identification of 26 as a lead. Moreover, 26, a multitargeted kinase inhibitor, possesses excellent potencies against FLT3 mutants as well as FAK. Gratifyingly, 26 remarkably inhibits recalcitrant FLT3 mutants, including F691L, that cause drug resistance. Importantly, 26 is superior to PF-562271 in terms of apoptosis induction, anchorage-independent growth inhibition, and tumor burden reduction in the MDA-MB-231 xenograft mouse model. Also, 26 causes regression of tumor growth in the MV4-11 xenograft mouse model, indicating that it could be effective against acute myeloid leukemia (AML). Finally, in an orthotopic mouse model using MDA-MB-231, 26 remarkably prevents metastasis of orthotopic tumors to lymph nodes. Taken together, the results indicate that 26 possesses potential therapeutic value against highly invasive cancers and relapsed AML.
Collapse
Affiliation(s)
- Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Injae Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Younghoon Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - SeongShick Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- B2Sbio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Jeon JY, Buelow DR, Garrison DA, Niu M, Eisenmann ED, Huang KM, Zavorka Thomas ME, Weber RH, Whatcott CJ, Warner SL, Orwick SJ, Carmichael B, Stahl E, Brinton LT, Lapalombella R, Blachly JS, Hertlein E, Byrd JC, Bhatnagar B, Baker SD. TP-0903 is active in models of drug-resistant acute myeloid leukemia. JCI Insight 2020; 5:140169. [PMID: 33268594 PMCID: PMC7714403 DOI: 10.1172/jci.insight.140169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Effective treatment for AML is challenging due to the presence of clonal heterogeneity and the evolution of polyclonal drug resistance. Here, we report that TP-0903 has potent activity against protein kinases related to STAT, AKT, and ERK signaling, as well as cell cycle regulators in biochemical and cellular assays. In vitro and in vivo, TP-0903 was active in multiple models of drug-resistant FLT3 mutant AML, including those involving the F691L gatekeeper mutation and bone marrow microenvironment–mediated factors. Furthermore, TP-0903 demonstrated preclinical activity in AML models with FLT3-ITD and common co-occurring mutations in IDH2 and NRAS genes. We also showed that TP-0903 had ex vivo activity in primary AML cells with recurrent mutations including MLL-PTD, ASXL1, SRSF2, and WT1, which are associated with poor prognosis or promote clinical resistance to AML-directed therapies. Our preclinical studies demonstrate that TP-0903 is a multikinase inhibitor with potent activity against multiple drug-resistant models of AML that will have an immediate clinical impact in a heterogeneous disease like AML. TP-0903, a multikinase inhibitor, demonstrates preclinical activity in models of drug-resistant AML, including those involving FLT3 mutations, bone marrow microenvironment-mediated factors and recurrent mutations.
Collapse
Affiliation(s)
- Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | | | - Mingshan Niu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | - Robert H Weber
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | | | | | | | - Emily Stahl
- Division of Hematology, Department of Internal Medicine, and
| | | | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Erin Hertlein
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - John C Byrd
- Division of Pharmaceutics and Pharmacology, College of Pharmacy.,Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy.,Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| |
Collapse
|
5
|
Deng X, Zheng W, Jin C, Bai L. Synthesis of Novel 6-Aryloxy-4-chloro-2-phenylpyrimidines as Fungicides and Herbicide Safeners. ACS OMEGA 2020; 5:23996-24004. [PMID: 32984721 PMCID: PMC7513367 DOI: 10.1021/acsomega.0c03300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 05/02/2023]
Abstract
Fenclorim is a commercial herbicide safener with fungicidal activity used for chloroacetanilide herbicides, which might be suitable as a lead compound for screening novel fungicides. However, little has been reported so far on the structure-activity relationship of fungicidal activities of fenclorim or its analogues. Here, a series of 4-chloro-6-substituted phenoxy-2-phenylpyrimidine derivatives was synthesized by a substructure splicing route using fenclorim as a lead compound. The structures of synthesized derivatives were characterized by 1H NMR, 13C NMR, and HRMS. Their fungicidal and herbicide safening activities were then evaluated. The results revealed that compound 11 had the best fungicidal activity against Sclerotinia sclerotiorum and Thanatephorus cucumeris, which was better than that of the control pyrimethanil. Moreover, compounds 3, 5, and 25 exhibited excellent safening activities against fresh weight, plant height, and root length, respectively. Such activities were significantly improved when compared to fenclorim. In summary, these findings look promising for the preparation of new fungicides and herbicide safeners based on the structure of fenclorim.
Collapse
|
6
|
Liu J, Wang Y, Chen C, Tu Z, Zhu S, Zhou F, Si H, Zheng C, Zhang Z, Cai Q. Identification and Development of 1,4-Diaryl-1,2,3-triazolo-Based Ureas as Novel FLT3 Inhibitors. ACS Med Chem Lett 2020; 11:1567-1572. [PMID: 32832025 DOI: 10.1021/acsmedchemlett.0c00216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
A class of 1,4-diaryl-1,2,3-triazolo-based ureas were synthesized and developed as novel FLT3 inhibitors. The representative compound 28 strongly inhibited FLT3-ITD kinase (IC50 = 32.8 nM) and isogenic BaF3-FLT3-ITD cell (GI50 = 0.6 nM). It exhibited potent inhibition against FLT3-ITD positive MV4-11 (GI50 = 3.0 nM) and MOLM-13 (GI50 = 5.9 nM) cell lines and high selectivity over FLT3-WT cell lines. It also displayed good pharmacokinetics properties and demonstrated promising oral in vivo efficacy in a MV4-11 cell xenografted mouse model. It might be a potent lead compound for further development to treat FLT3-ITD driven acute myloid leukemia.
Collapse
Affiliation(s)
- Jisheng Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yuting Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chen Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Sihua Zhu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hongfei Si
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Canhui Zheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
7
|
Zhong Y, Qiu RZ, Sun SL, Zhao C, Fan TY, Chen M, Li NG, Shi ZH. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J Med Chem 2020; 63:12403-12428. [PMID: 32659083 DOI: 10.1021/acs.jmedchem.0c00696] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is an important member of the class III receptor tyrosine kinase (RTK) family, which is involved in the proliferation of hematopoietic cells and lymphocytes. In recent years, increasing evidence have demonstrated that the activation and mutation of FLT3 is closely implicated in the occurrence and development of acute myeloid leukemia (AML). The exploration of small-molecule inhibitors targeting FLT3 has aroused wide interest of pharmaceutical chemists and is expected to bring new hope for AML therapy. In this review, we specifically highlighted FLT3 mediated JAK/STAT, RAS/MAPK, and PI3K/AKT/mTOR signaling. The structural properties and biological activities of representative FLT3 inhibitors reported from 2014 to the present were also summarized. In addition, the major challenges in the current advance of novel FLT3 inhibitors were further analyzed, with the aim to guide future drug discovery.
Collapse
Affiliation(s)
- Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Run-Ze Qiu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Bhujbal SP, Keretsu S, Cho SJ. Design of New Therapeutic Agents Targeting FLT3 Receptor Tyrosine Kinase Using Molecular Docking and 3D-QSAR Approach. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190618104632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
FMS-like tyrosine kinase-3 (FLT3) belongs to the class III Receptor
Tyrosine Kinase (RTK) family. FLT3 is involved in normal hematopoiesis and is generally
expressed in early hematopoietic progenitor cells. Mutations either with an internal tandem
duplication of FMS-like tyrosine kinase-3 (FLT3-ITD) or point mutation at the activation loop leads
to the Acute Myeloid Leukemia (AML), a highly heterogeneous disease. Thus, FLT3 is an important
therapeutic target for AML.
Method:
In the present work, docking and 3D-QSAR techniques were performed on a series of
diaminopyrimidine derivatives as FLT3 kinase antagonists.
Results:
Docking study recognized important active site residues such as Leu616, Gly617, Val624,
Ala642, Phe830, Tyr693, Cys694, Cys695, Tyr696 and Gly697 that participate in the inhibition of
FLT3 kinase. Receptor-based CoMFA, RF-CoMFA and CoMSIA models were developed. RFCoMFA
model revealed relatively better statistical results compared to other models. Furthermore,
the selected RF-CoMFA model was evaluated using various validation techniques. Contour maps of
the RF-CoMFA illustrated that steric and electronegative substitutions were favored at R1 position
whereas steric and electropositive substitutions were favored at R2 position to enhance the potency.
Conclusion:
Based on the designed strategy, we derived from the contour map analysis, 14 novel
FLT3 inhibitors were designed and their activities were predicted. These designed inhibitors
exhibited more potent activity than the most active compounds of the dataset.
Collapse
Affiliation(s)
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
9
|
Jeon JY, Zhao Q, Buelow DR, Phelps M, Walker AR, Mims AS, Vasu S, Behbehani G, Blachly J, Blum W, Klisovic RB, Byrd JC, Garzon R, Baker SD, Bhatnagar B. Preclinical activity and a pilot phase I study of pacritinib, an oral JAK2/FLT3 inhibitor, and chemotherapy in FLT3-ITD-positive AML. Invest New Drugs 2019; 38:340-349. [PMID: 31102119 DOI: 10.1007/s10637-019-00786-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Activating FLT3 internal tandem duplication (FLT3-ITD) mutations in acute myeloid leukemia (AML) associate with inferior outcomes. We determined that pacritinib, a JAK2/FLT3 inhibitor, has in vitro activity against FLT3-ITD and tyrosine kinase domain (TKD) mutations. Therefore, we conducted a phase I study of pacritinib in combination with chemotherapy in AML patients with FLT3 mutations to determine the pharmacokinetics and preliminary toxicity and clinical activity. Pacritinib was administered at a dose of 100 mg or 200 mg twice daily following a 3 + 3 dose-escalation in combination with cytarabine and daunorubicin (cohort A) or with decitabine induction (cohort B). A total of thirteen patients were enrolled (five in cohort A; eight in cohort B). Dose limiting toxicities include hemolytic anemia and grade 3 QTc prolongation in two patients who received 100 mg. Complete remission was achieved in two patients in cohort A, one of whom had a minor D835Y clone at baseline. One patient in cohort B achieved morphologic leukemia free state. Seven patients (two in cohort A; five in cohort B) had stable disease. In conclusion, pacritinib, an inhibitor of FLT3-ITD and resistant-conferring TKD mutations, was well tolerated and demonstrated preliminary anti-leukemic activity in combination with chemotherapy in patients with FLT3 mutations.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bridged-Ring Compounds/adverse effects
- Bridged-Ring Compounds/pharmacokinetics
- Bridged-Ring Compounds/pharmacology
- Bridged-Ring Compounds/therapeutic use
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytarabine/adverse effects
- Cytarabine/therapeutic use
- Daunorubicin/adverse effects
- Daunorubicin/therapeutic use
- Decitabine/adverse effects
- Decitabine/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Female
- Humans
- Janus Kinase 2/antagonists & inhibitors
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Mutation
- Pilot Projects
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/adverse effects
- Pyrimidines/pharmacokinetics
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Jae Yoon Jeon
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Qiuhong Zhao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daelynn R Buelow
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Mitch Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alison R Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sumithira Vasu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory Behbehani
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - William Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca B Klisovic
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|