1
|
Tu Y, Ren H, He Y, Ying J, Chen Y. Interaction between microorganisms and dental material surfaces: general concepts and research progress. J Oral Microbiol 2023; 15:2196897. [PMID: 37035450 PMCID: PMC10078137 DOI: 10.1080/20002297.2023.2196897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacterial adhesion to dental materials’ surfaces is the initial cause of dental materials-related infections. Therefore, inhibiting bacterial adhesion is a critical step in preventing and controlling these infections. To this end, it is important to know how the properties of dental materials affect the interactions between microorganisms and material surfaces to produce materials without biological contamination. This manuscript reviews the mechanism of bacterial adhesion to dental materials, the relationships between their surface properties and bacterial adhesion, and the impact of bacterial adhesion on their surface properties. In addition, this paper summarizes how these surface properties impact oral biofilm formation and proposes designing intelligent dental material surfaces that can reduce biological contamination.
Collapse
Affiliation(s)
- Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Huaying Ren
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yiwen He
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Ying
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Chen
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- CONTACT Yadong Chen Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou310000, China
| |
Collapse
|
2
|
Kalimuthu R, Meenachi Sellan K, Antony D, Rajaprakasam S, Chokkalingam V, Chidambaram P, Kanagarajan S. Nanopriming Action of Microwave-Assisted Biofunctionalized ZnO Nanoparticles to Enhance the Growth under Moisture Stress in Vigna radiata. ACS OMEGA 2023; 8:28143-28155. [PMID: 37576682 PMCID: PMC10413846 DOI: 10.1021/acsomega.3c01329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Bare and stabilized zinc oxide nanoparticles (ZnO NPs) were prepared by a microwave-assisted method and used as a priming agent to improve the morphological, physiological, and biochemical quality of Vigna radiata. The priming action was made under normal and moisture stress conditions. A microwave reactor of 850 watts power was used to heat 30 mL of a nanocolloidal solution at 140 °C for 20 min. The stable spherical ZnO NPs at 50.4 mV with 28.2 nm particle size were generated and capped with different biomolecules, cysteine and PVA, to get biostabilized ZnO NPs at 48.8 and 108.5 nm with ζ potentials of -56.2 and -52.0 mV, respectively, holding distinct morphology. The nanopriming effect was studied in V. radiata seeds for bare ZnO and capped ZnO NPs under normal and moisture stress environments. Cysteine-capped ZnO NPs at 250 ppm showed improved germination (90 and 76%), radicle growth (7.6 and 3.6 cm), seedling Vigor (3064 and 1816), dry matter production (145.06 and 96.92 mg/25 seedlings), and hydrolytic (α-amylase and protease) and antioxidant (peroxidase and superoxide dismutase) enzyme activity under normal and moisture stress conditions. The improved priming action of cysteine-capped ZnO NPs is due to increased cell elongation and cell division in the radicle. The uptake and translocation of ZnO NPs in the V. radiata root are evidenced by the presence of an 11.4 ppm zinc level, which was also supported by EDAX and FITC labeling results.
Collapse
Affiliation(s)
- Raja Kalimuthu
- Anbil
Dharmalingam Agricultural College & Research Institute, TNAU, Trichy 620027, Tamil Nadu, India
| | | | - Dhivya Antony
- Department
of Chemistry, Dhanalakshmi Srinivasan Arts
and Science (co-education) College (Affiliated to University of Madras), Mamallapuram, Chennai 603104, Tamil
Nadu, India
| | - Sudhagar Rajaprakasam
- Plant
Breeding and Genetics, Tamil Nadu Agricultural
University, TNAU, Coimbatore 641 003, India
| | - Vanniarajan Chokkalingam
- Anbil
Dharmalingam Agricultural College & Research Institute, TNAU, Trichy 620027, Tamil Nadu, India
| | - Prabu Chidambaram
- Department
of Environmental Science, Tamil Nadu Agricultural
University, Coimbatore 641 003, India
| | - Selvaraju Kanagarajan
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| |
Collapse
|
3
|
Siddique T, Gangadoo S, Quang Pham D, Dutta NK, Choudhury NR. Antifouling and Antimicrobial Study of Nanostructured Mixed-Matrix Membranes for Arsenic Filtration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040738. [PMID: 36839105 PMCID: PMC9964044 DOI: 10.3390/nano13040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 05/08/2023]
Abstract
Membrane fouling is a major drawback in the membrane filtration industry for water treatment. Mixed-matrix membranes (MMMs) are well known for their enhanced antifouling and antibacterial properties, which could offer potential benefits for membrane filtration processes in the water treatment field. In this work, three electrospun nanofibrous MMMs (P, CP, and MCP, which were, respectively, the pristine polysulfone membrane and mixed-matrix membranes (MMMs) consisting of GO-ZnO and GO-ZnO-iron oxides) were studied for antifouling and antibacterial properties with respect to the arsenic nanofiltration process. The effects of these composites on the antifouling behaviour of the membranes were studied by characterising the bovine serum albumin (BSA) protein adsorption on the membranes and subsequent analysis using microscopic (morphology via scanning electron microscopy) and Brunauer-Emmett-Teller (BET) analyses. The antibacterial properties of these membranes were also studied against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The composite nanoparticle-incorporated membranes showed improved antifouling properties in comparison with the pristine polysulfone (PSF) membrane. The excellent antimicrobial properties of these membranes make them appropriate candidates to contribute to or overcome biofouling issues in water or wastewater treatment applications.
Collapse
Affiliation(s)
- Tawsif Siddique
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Sheeana Gangadoo
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Duy Quang Pham
- College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Naba K. Dutta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Correspondence: (N.K.D.); (N.R.C.)
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Correspondence: (N.K.D.); (N.R.C.)
| |
Collapse
|
4
|
Etemadi H, Khezraqa H, Hermani M. Incorporation of amino‐functionalized
ZnO
nanoparticles into polycarbonate/polyvinyl alcohol thin‐film membrane for enhanced water treatment. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Habib Etemadi
- Department of Polymer Science and Engineering University of Bonab Bonab Iran
| | - Homayun Khezraqa
- Department of Polymer Science and Engineering University of Bonab Bonab Iran
| | - Milad Hermani
- Department of Chemical Engineering University of Bonab Bonab Iran
| |
Collapse
|
5
|
Al-Ghafri B, Kyaw HH, Al-Abri M, Lau WJ. Performance Study of Novel PES Membrane using Electrospray Deposition Method for Organic Contaminants Separation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Das P, Das S, Jana R. Aryldiazonium Salts and DABSO: a Versatile Combination for Three-Component Sulfonylative Cross-Coupling Reactions. Chem Asian J 2022; 17:e202200085. [PMID: 35366373 DOI: 10.1002/asia.202200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Indexed: 11/09/2022]
Abstract
A combination of aryldiazonium salts and DABSO provides a unique opportunity for sulfonylative multicomponent cross-coupling reactions. Here, a copper-catalyzed three-component cross-coupling of aryldiazonium salts, DABSO with arylboronic acids to obtain medicinally relevant unsymmetrical diarylsulfones is disclosed. Interestingly, a catalyst-free approach for the synthesis of arylvinylsulfones from the corresponding vinyl boronic acid or vinyl halides is explored under basic condition. Tethered aryldiazonium salts provided the corresponding annulated alkylvinylsulfones via alkene difunctionalization under the same transition metal-free condition. Mechanistically, these multicomponent reactions proceed through a single electron pathway by the formation of arylsulfonyl radical as a key intermediate.
Collapse
Affiliation(s)
- Pritha Das
- CSIR-IICB: Indian Institute of Chemical Biology CSIR, Organic and Medicinal Chemistry Division, INDIA
| | - Subhodeep Das
- CSIR-IICB: Indian Institute of Chemical Biology CSIR, Organic and Medicinal Chemistry Division, INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR, Chemistry Division, 4, Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, INDIA
| |
Collapse
|
7
|
Chitosan/benzyloxy-benzaldehyde modified ZnO nano template having optimized and distinct antiviral potency to human cytomegalovirus. Carbohydr Polym 2022; 278:118965. [PMID: 34973780 DOI: 10.1016/j.carbpol.2021.118965] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Utilization of biomolecules encapsulated nano particles is currently originating ample attention to generate unconventional nanomedicines in antiviral research. Zinc oxide nanoparticle has been extensively studied for antimicrobial, antifungal and antifouling properties due to high surface to volume ratios and distinctive chemical as well as physical properties. Nevertheless, still minute information is available on their response on viruses. Here, in situ nanostructured and polysaccharide encapsulated ZnO NPs are fabricated with having antiviral potency and low cytotoxicity (%viability ~ 90%) by simply controlling the formation within interspatial 3D networks of hydrogels through perfect locking mechanism. The two composites ChH@ZnO and ChB@ZnO shows exceedingly effective antiviral activity toward Human cytomegalovirus (HCMV) having cell viability 93.6% and 92.4% up to 400 μg mL-1 concentration. This study brings significant insights regarding the role of ZnO NPs surface coatings on their nanotoxicity and antiviral action and could potentially guide to the development of better antiviral drug.
Collapse
|
8
|
Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioact Mater 2021; 11:181-191. [PMID: 34938922 PMCID: PMC8665260 DOI: 10.1016/j.bioactmat.2021.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
To endow Ti-based orthopedic implants with strong bactericidal activity, a ZnO nanorods-patterned coating (namely ZNR) was fabricated on Ti utilizing a catalyst- and template-free method of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of ZnO nanorods and a partially crystallized inner layer with nanocrystalline TiO2 and Zn2TiO4 embedded amorphous matrix containing Ti, O and Zn. During HT, Zn2+ ions contained in amorphous matrix of the as-MAOed layer migrate to surface and react with OH− in hydrothermal solution to form ZnO nuclei growing in length at expense of the migrated Zn2+. ZNR exhibits intense bactericidal activity against the adhered and planktonic S. aureus in vitro and in vivo. The crucial contributors to kill the adhered bacteria are ZnO nanorods derived mechano-penetration and released reactive oxygen species (ROS). Within 30 min of S. aureus incubation, ROS is the predominant bactericidal contributor with quantitative contribution value of ∼20%, which transforms into mechano-penetration with prolonging time to reach quantitative contribution value of ∼96% at 24 h. In addition, the bactericidal contributor against the planktonic bacteria of ZNR is relied on the released Zn2+. This work discloses an in-depth bactericidal mechanism of ZnO nanorods. A templates and catalysts-free method is used to fabricate ZnO nanorods on Ti ZnO nanorods-arrayed coating shows intense broad-spectrum bactericidal activity Main bactericidal contributor of ZnO nanorods to adhered bacteria is mechano-puncture Main bactericidal contributor of ZnO nanorods to planktonic bacteria is released Zn2+
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yufeng Zheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
9
|
Kumar S, Ye F, Dobretsov S, Dutta J. Nanocoating Is a New Way for Biofouling Prevention. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.771098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biofouling is a major concern to the maritime industry. Biofouling increases fuel consumption, accelerates corrosion, clogs membranes and pipes, and reduces the buoyancy of marine installations, such as ships, platforms, and nets. While traditionally marine installations are protected by toxic biocidal coatings, due to recent environmental concerns and legislation, novel nanomaterial-based anti-fouling coatings are being developed. Hybrid nanocomposites of organic-inorganic materials give a possibility to combine the characteristics of both groups of material generating opportunities to prevent biofouling. The development of bio-inspired surface designs, progress in polymer science and advances in nanotechnology is significantly contributing to the development of eco-friendly marine coatings containing photocatalytic nanomaterials. The review mainly discusses photocatalysis, antifouling activity, and formulation of coatings using metal and metal oxide nanomaterials (nanoparticles, nanowires, nanorods). Additionally, applications of nanocomposite coatings for inhibition of micro- and macro-fouling in marine environments are reviewed.
Collapse
|
10
|
Park KH, Sun PF, Kang EH, Han GD, Kim BJ, Jang Y, Lee SH, Shim JH, Park HD. Photocatalytic anti-biofouling performance of nanoporous ceramic membranes treated by atomic layer deposited ZnO. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
The dye adsorption and antibacterial properties of composite polyacrylamide cryogels modified with ZnO. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Preparation of Thin-Film Composite Nanofiltration Membranes Doped with N- and Cl-Functionalized Graphene Oxide for Water Desalination. Polymers (Basel) 2021; 13:polym13101637. [PMID: 34070156 PMCID: PMC8158488 DOI: 10.3390/polym13101637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the present work, chemically modified graphene oxide (GO) was incorporated as a crosslinking agent into thin-film composite (TFC) nanofiltration (NF) membranes for water desalination applications, which were prepared by the interfacial polymerization (IP) method, where the monomers were piperazine (PIP) and trimesoyl chloride (TMC). GO was functionalized with monomer-containing groups to promote covalent interactions with the polymeric film. The composite GO/polyamide (PA) was prepared by incorporating amine and acyl chloride groups into the structure of GO and then adding these chemical modified nanomaterial during IP. The effect of functionalized GO on membrane properties and performance was investigated. Chemical composition and surface morphology of the prepared GO and membranes were analyzed by thermogravimetric analysis (TGA), Raman spectroscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The fabricated composite membranes exhibited a significant increase in permeance (from 1.12 to 1.93 L m-2 h-1 bar-1) and salt rejection for Na2SO4 (from 95.9 to 98.9%) and NaCl (from 46.2 to 61.7%) at 2000 ppm, when compared to non-modified membranes. The amine- and acyl chloride-functionalized GO showed improved dispersibility in the respective phase.
Collapse
|
13
|
Ferreira NS, Sasaki JM, Silva RS, Attah-Baah JM, Macêdo MA. Visible-Light-Responsive Photocatalytic Activity Significantly Enhanced by Active [ VZn+ VO+] Defects in Self-Assembled ZnO Nanoparticles. Inorg Chem 2021; 60:4475-4496. [PMID: 33710867 DOI: 10.1021/acs.inorgchem.0c03327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defect influences on the photoactivity of ZnO nanoparticles prepared by a powdered coconut water (ACP) assisted synthesis have been studied. The crystalline phase and morphology of ZnO nanoparticles were effectively controlled by adjusting the calcination temperature (400-700 °C). An induced transition of hybrid Zn5(CO3)2(OH)6/ZnO nanoparticles to single-phase ZnO nanoparticles was obtained at 480 °C. The morphological analysis revealed a formation of ZnO nanoparticles with semispherical (∼6.5 nm)- and rod-like (∼96 nm) shapes when the calcination temperatures were 400 and 700 °C, respectively. Photoluminescence characterizations revealed several defects types in the samples with VZn and VO+ being in the self-assembly of semispherical- and rod-like ZnO nanoparticles. The photocatalytic activity of the ZnO nanoparticles was examined by assessing the degradation of methylene blue in an aqueous solution under low-intensity visible-light irradiation (∼3 W m-2). The results point toward the self-assembly of semispherical- and rod-like ZnO nanoparticles that had significantly better photocatalytic activity (∼31%) in comparison to that of spherical-agglomerated- or near-spherical-like species within 120 min of irradiation. The possible photocatalytic mechanism is discussed in detail, and the morphology-driven intrinsic [VZn+VO+] defects are proposed to be among the active sites of the ZnO nanoparticles enhancing the photocatalytic activity.
Collapse
Affiliation(s)
- Nilson S Ferreira
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - José M Sasaki
- Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | - Romualdo S Silva
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - John M Attah-Baah
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Marcelo A Macêdo
- Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.,Laboratório de Corrosão e Nanotecnologia (LCNT), Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil
| |
Collapse
|
14
|
Paulkumar K, Jesi Reeta T, Emmanuel Joshua Jebasingh S, Mangalanagasundari S, Muthu K, Murugan K. Potential utilization of zinc nanoparticles for wastewater treatment. AQUANANOTECHNOLOGY 2021:437-466. [DOI: 10.1016/b978-0-12-821141-0.00026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Nanoparticle-based 3D membrane for impedimetric biosensor applications. Bioelectrochemistry 2020; 136:107593. [DOI: 10.1016/j.bioelechem.2020.107593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/27/2020] [Accepted: 06/28/2020] [Indexed: 11/21/2022]
|
16
|
Laxman K, Sathe P, Al Abri M, Dobretsov S, Dutta J. Disinfection of Bacteria in Water by Capacitive Deionization. Front Chem 2020; 8:774. [PMID: 33110910 PMCID: PMC7489198 DOI: 10.3389/fchem.2020.00774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
Clean water is one of the primary UN sustainable development goals for 2,030 and sustainable water deionization and disinfection is the backbone of that goal. Capacitive deionization (CDI) is an upcoming technique for water deionization and has shown substantial promise for large scale commercialization. In this study, activated carbon cloth (ACC) electrode based CDI devices are used to study the removal of ionic contaminants in water and the effect of ion concentrations on the electrosorption and disinfection functions of the CDI device for mixed microbial communities in groundwater and a model bacterial strain Escherichia coli. Up to 75 % of microbial cells could be removed in a single pass through the CDI unit for both synthetic and groundwater, while maintaining the salt removal activity. Mortality of the microbial cells were also observed during the CDI cell regeneration and correlated with the chloride ion concentrations. The power consumption and salt removal capacity in the presence and absence of salt were mapped and shown to be as low as 0.1 kWh m−3 and 9.5 mg g−1, respectively. The results indicate that CDI could be a viable option for single step deionization and microbial disinfection of brackish water.
Collapse
Affiliation(s)
- Karthik Laxman
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences (SCI), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Priyanka Sathe
- Nanotechnology Research Centre, Sultan Qaboos University, Muscat, Oman.,Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed Al Abri
- Nanotechnology Research Centre, Sultan Qaboos University, Muscat, Oman.,Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.,Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Joydeep Dutta
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences (SCI), KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
17
|
Alenazi NA, Alamry KA, Hussein MA, Elfaky MA, Asiri AM. Enhanced antifouling and anticoagulant properties of grafted biomolecule polyethersulfone membranes. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Noof Ali Alenazi
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid Ahmad Alamry
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud Ali Hussein
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Polymer Chemistry Laboratory, Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | - Mahmoud Abdelkhalek Elfaky
- Fcaulty of Pharmacy, Natural Products and Alternative Medicine DepartmentKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah Mohamed Asiri
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials ResearchKing Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
18
|
Pandiyan R, Ayyaru S, Ahn YH. Non-toxic properties of TiO 2 and STiO 2 nanocomposite PES ultrafiltration membranes for application in membrane-based environmental biotechnology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:248-255. [PMID: 29709762 DOI: 10.1016/j.ecoenv.2018.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
In membrane bioreactor (MBR) technology, nanocomposite membrane has a great potential to improve the filtration performance and antifouling. However, antibacterial activity of nanoparticles (NPs) is a significant disadvantage which can be impacted to bacterial growth and microbial community in MBRs. The modified polyethersulfone (PES) ultrafiltration (UF) membranes in the study were prepared by using TiO2 NPs and TiO2 NPs functionalized with sulfonation (STiO2). The antibacterial effect of NPs and non-toxic properties of nanocomposite membranes were examined by using three different Gram-negative bacterial species isolated from a local full scale membrane bioreactor treating municipal wastewater (Escherichia coli, Pantoea agglomerans, and Pseudomonas graminis). Results are revealed that the TiO2 and STiO2 NPs have 60% of antibacterial activity based on disc diffusion, viability tests, and TEM analysis. However, the PES-TiO2 and PES-STiO2 nanocomposite UF membranes showed significantly lower antibacterial activity (<95%, significance at p < 0.0001), indicating innocuous to bacterial growth. This study highlights that the PES-TiO2 and PES-STiO2 nanocomposite membrane is more sustainable than PES membrane and promising materials for MBRs, by taking advantage of non-toxic properties to bacterial growth.
Collapse
Affiliation(s)
- Rajesh Pandiyan
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
19
|
Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|