1
|
Pota G, Andrés-Sanz D, Gallego M, Vitiello G, López-Gallego F, Costantini A, Califano V. Deciphering the immobilization of lipases on hydrophobic wrinkled silica nanoparticles. Int J Biol Macromol 2024; 266:131022. [PMID: 38522688 DOI: 10.1016/j.ijbiomac.2024.131022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
In this work, the adsorption of Candida antarctica B (CALB) and Rhizomucor miehei (RML) lipases into hydrophobic wrinkled silica nanoparticles (WSNs) is investigated. WSNs are hydrophobized by chemical vapor deposition. Both proteins are homogeneously distributed inside the pores of the nanoparticles, as confirmed by Transmission Electron Microscopy and Energy Dispersive X-ray measurements. The maximum enzyme load of CALB is twice that obtained for RML. Fourier Transform Infrared Spectroscopy confirms the preservation of the enzyme secondary structure after immobilization for both enzymes. Adsorption isotherms fit to a Langmuir model, resulting in a binding constant (KL) for RML 4.5-fold higher than that for CALB, indicating stronger binding for the former. Kinetic analysis reveals a positive correlation between enzyme load and RML activity unlike CALB where activity decreases along the enzyme load increases. Immobilization allows for enhancing the thermal stability of both lipases. Finally, CALB outperforms RML in the hydrolysis of ethyl-3-hydroxybutyrate. However, immobilized CALB yielded 20 % less 3-HBA than free lipase, while immobilized RML increases 3-fold the 3-HBA yield when compared with the free enzyme. The improved performance of immobilized RML can be explained due to the interfacial hyperactivation undergone by this lipase when immobilized on the superhydrophobic surface of WSNs.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy
| | - Daniel Andrés-Sanz
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy; CSGI, Center for Colloid and Surface Science, Sesto Fiorentino, FI, Italy
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Aniello Costantini
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy.
| | - Valeria Califano
- Institute of Science and Technology for Sustainable Energy and Mobility (STEMS), National Research Council of Italy (CNR), Viale Marconi 4, 80125 Naples, Italy
| |
Collapse
|
2
|
Jia H, Chen Z, Yan S, Lucaccioni F, Kochovski Z, Lu Y, Friebe C, Schubert US, Gohy JF. Chameleon Multienvironment Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20166-20174. [PMID: 37058326 DOI: 10.1021/acsami.3c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanoreactors consisting of hydrophilic porous SiO2 shells and amphiphilic copolymer cores have been prepared, which can easily self-tune their hydrophilic/hydrophobic balance depending on the environment and exhibit chameleon-like behavior. The accordingly obtained nanoparticles show excellent colloidal stability in a variety of solvents with different polarity. Most importantly, thanks to the assistance of the nitroxide radicals attached to the amphiphilic copolymers, the synthesized nanoreactors show high catalytic activity for model reactions in both polar and nonpolar environments and, more particularly, realize a high selectivity for the products resulting from the oxidation of benzyl alcohol in toluene.
Collapse
Affiliation(s)
- He Jia
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Zehan Chen
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Shanshan Yan
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Fabio Lucaccioni
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Christian Friebe
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanoscience (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Pota G, Gallucci N, Cavasso D, Krauss IR, Vitiello G, López-Gallego F, Costantini A, Paduano L, Califano V. Controlling the Adsorption of β-Glucosidase onto Wrinkled SiO 2 Nanoparticles To Boost the Yield of Immobilization of an Efficient Biocatalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1482-1494. [PMID: 36651862 PMCID: PMC9893809 DOI: 10.1021/acs.langmuir.2c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose, a substrate for fermentation to produce the carbon-neutral fuel bioethanol. Enzyme thermal stability and reusability can be improved through immobilization onto insoluble supports. Moreover, nanoscaled matrixes allow for preserving high reaction rates. In this work, BG was physically immobilized onto wrinkled SiO2 nanoparticles (WSNs). The adsorption procedure was tuned by varying the BG:WSNs weight ratio to achieve the maximum controllability and maximize the yield of immobilization, while different times of immobilization were monitored. Results show that a BG:WSNs ratio equal to 1:6 wt/wt provides for the highest colloidal stability, whereas an immobilization time of 24 h results in the highest enzyme loading (135 mg/g of support) corresponding to 80% yield of immobilization. An enzyme corona is formed in 2 h, which gradually disappears as the protein diffuses within the pores. The adsorption into the silica structure causes little change in the protein secondary structure. Furthermore, supported enzyme exhibits a remarkable gain in thermal stability, retaining complete folding up to 90 °C. Catalytic tests assessed that immobilized BG achieves 100% cellobiose conversion. The improved adsorption protocol provides simultaneously high glucose production, enhanced yield of immobilization, and good reusability, resulting in considerable reduction of enzyme waste in the immobilization stage.
Collapse
Affiliation(s)
- Giulio Pota
- University
of Naples Federico II, Department of Chemical,
Materials and Production Engineering, 80125Naples, Italy
| | - Noemi Gallucci
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Domenico Cavasso
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
| | - Irene Russo Krauss
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Giuseppe Vitiello
- University
of Naples Federico II, Department of Chemical,
Materials and Production Engineering, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Fernando López-Gallego
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20850Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 948009Bilbao, Spain
| | - Aniello Costantini
- University
of Naples Federico II, Department of Chemical,
Materials and Production Engineering, 80125Naples, Italy
| | - Luigi Paduano
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Valeria Califano
- Institute
of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council of Italy (CNR), Viale Marconi 4, 80125Naples, Italy
| |
Collapse
|
4
|
Lukas J, Družeta I, Kühl T. Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts. Biol Chem 2022; 403:1099-1105. [PMID: 36257922 DOI: 10.1515/hsz-2022-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Fe(III) heme is known to possess low catalytic activity when exposed to hydrogen peroxide and a reducing substrate. Efficient non-covalently linked Fe(III) heme-peptide complexes may represent suitable alternatives as a new group of green catalysts. Here, we evaluated a set of heme-peptide complexes by determination of their peroxidase-like activity and the kinetics of the catalytic conversion in both, the soluble and the immobilized state. We show the impact of peptide length on binding of the peptides to Fe(III) heme and the catalytic activity. Immobilization of the peptide onto a polymer support maintains the catalytic performance of the Fe(III) heme-peptide complex. This study thus opens up a new perspective with regard to the development of heterogeneous biocatalysts with a peroxidase-like activity.
Collapse
Affiliation(s)
- Joey Lukas
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
5
|
Li R, Kong W, An Z. Enzyme Catalysis for Reversible Deactivation Radical Polymerization. Angew Chem Int Ed Engl 2022; 61:e202202033. [PMID: 35212121 DOI: 10.1002/anie.202202033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 12/31/2022]
Abstract
Enzyme catalysis has been increasingly utilized in reversible deactivation radical polymerization (Enz-RDRP) on account of its mildness, efficiency, and sustainability. In this Minireview we discuss the key roles enzymes play in RDRP, including their ATRPase, initiase, deoxygenation, and photoenzyme activities. We use selected examples to highlight applications of Enz-RDRP in surface brush fabrication, sensing, polymerization-induced self-assembly, and high-throughput synthesis. We also give our reflections on the challenges and future directions of this emerging area.
Collapse
Affiliation(s)
- Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weina Kong
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
An Z, Li R, Kong W. Enzyme Catalysis for Reversible Deactivation Radical Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zesheng An
- Jilin University State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry 2699 Qianjin Street, Changchun 130012, China 130012 Changchun CHINA
| | - Ruoyu Li
- Jilin University College of Chemistry CHINA
| | - Weina Kong
- Jilin University College of Chemistry CHINA
| |
Collapse
|
7
|
Lu Y, Zhu Y, Yang F, Xu Z, Liu Q. Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004082. [PMID: 34047073 PMCID: PMC8336505 DOI: 10.1002/advs.202004082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Advanced switchable molecules and materials have shown great potential in numerous applications. These novel materials can express different states of physicochemical properties as controlled by a designated stimulus, such that the processing condition can always be maintained in an optimized manner for improved efficiency and sustainability throughout the whole process. Herein, the recent advances in switchable molecules/materials in oil recovery and oily waste cleanup are reviewed. Oil recovery and oily waste cleanup are of critical importance to the industry and environment. Switchable materials can be designed with various types of switchable properties, including i) switchable interfacial activity, ii) switchable viscosity, iii) switchable solvent, and iv) switchable wettability. The materials can then be deployed into the most suitable applications according to the process requirements. An in-depth discussion about the fundamental basis of the design considerations is provided for each type of switchable material, followed by details about their performances and challenges in the applications. Finally, an outlook for the development of next-generation switchable molecules/materials is discussed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Yeling Zhu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Fan Yang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| | - Zhenghe Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qingxia Liu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| |
Collapse
|
8
|
Pei Gong, Wu M, Zhang J, Li X, Liu J, Wan F. Comprehensive Understanding of Gold Nanoparticles Enhancing Catalytic Efficiency. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Oliveira FL, S. França A, Castro AM, Alves de Souza ROM, Esteves PM, Gonçalves RSB. Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis. Chempluschem 2020; 85:2051-2066. [DOI: 10.1002/cplu.202000549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Felipe L. Oliveira
- Instituto de Quimica Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitaria Rio de Janeiro RJ 21941-909 Brazil
| | - Alexandre S. França
- Biocatalysis and Organic Synthesis Group Chemistry Institute Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitaria Rio de Janeiro RJ 21941-909 Brazil
| | - Aline Machado Castro
- Biotechnology Division Research and Development Center PETROBRAS Av. Horácio Macedo, 950. Ilha do Fundão Rio de Janeiro 21941-915 Brazil
| | - Rodrigo O. M. Alves de Souza
- Biocatalysis and Organic Synthesis Group Chemistry Institute Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitaria Rio de Janeiro RJ 21941-909 Brazil
| | - Pierre M. Esteves
- Instituto de Quimica Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitaria Rio de Janeiro RJ 21941-909 Brazil
| | - Raoni Schroeder B. Gonçalves
- Instituto de Quimica Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitaria Rio de Janeiro RJ 21941-909 Brazil
| |
Collapse
|
10
|
Goldhahn C, Taut JA, Schubert M, Burgert I, Chanana M. Enzyme immobilization inside the porous wood structure: a natural scaffold for continuous-flow biocatalysis. RSC Adv 2020; 10:20608-20619. [PMID: 35517771 PMCID: PMC9054300 DOI: 10.1039/c9ra10633b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Enzymes are often immobilized on solid supports to enable their recovery from reaction solutions, facilitate their reuse and hence increase cost-effectiveness in their application. Immobilized enzymes may even be used for flow-through applications in continuous processes. However, the synthesis of traditional immobilization scaffolds and immobilization techniques lack sustainability as they are often based on fuel-based materials and tedious synthesis- and immobilization approaches. Here, we present the natural material wood as a green alternative for enzyme immobilization. Its natural structure provides a mechanically stable porous scaffold with a high inner surface area that allows for directional flow-through of liquids. Enzymes were immobilized by nanoparticle-mediated adsorption, a simple, versatile and completely water-based process. The resulting wood-enzyme hybrids were intensely investigated for the model enzyme laccase. Reaction kinetics, as well as catalytic activities at various pH-values, temperatures, and ionic strengths were determined. The wood-enzyme hybrids could quickly and completely be removed from the reaction solution. Hence, they allow for multifold reusability. We show a series of 25 consecutive reaction cycles with a remaining activity in the last cycle of 90% of the maximal activity. Moreover, the anisotropic porosity of wood enabled the application of the hybrid material as a biocatalytic flow-through reactor. Flow-rate dependent productivity of a single-enzyme reaction was determined. Moreover, we show a two-step reaction cascade in continuous flow by the immobilization of the enzymes glucose oxidase and horseradish peroxidase. Therefore, the natural material wood proved to be a promising material for application in continuous-flow biocatalysis.
Collapse
Affiliation(s)
- Christian Goldhahn
- ETH Zürich, Institute for Building Materials Stefano-Franscini-Platz 3 8093 Zürich Switzerland
- Empa - Swiss Federal Laboratories for Material Science and Technology, Cellulose & Wood Materials Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Josef A Taut
- ETH Zürich, Institute for Building Materials Stefano-Franscini-Platz 3 8093 Zürich Switzerland
| | - Mark Schubert
- ETH Zürich, Institute for Building Materials Stefano-Franscini-Platz 3 8093 Zürich Switzerland
- Empa - Swiss Federal Laboratories for Material Science and Technology, Cellulose & Wood Materials Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Ingo Burgert
- ETH Zürich, Institute for Building Materials Stefano-Franscini-Platz 3 8093 Zürich Switzerland
- Empa - Swiss Federal Laboratories for Material Science and Technology, Cellulose & Wood Materials Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Munish Chanana
- ETH Zürich, Institute for Building Materials Stefano-Franscini-Platz 3 8093 Zürich Switzerland
- Empa - Swiss Federal Laboratories for Material Science and Technology, Cellulose & Wood Materials Überlandstrasse 129 8600 Dübendorf Switzerland
- Swiss Wood Solutions AG Stefano-Franscini-Platz 3 8093 Zürich Switzerland
| |
Collapse
|
11
|
Moehl GE, Bartlett PN, Hector AL. Using GISAXS to Detect Correlations between the Locations of Gold Particles Electrodeposited from an Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4432-4438. [PMID: 32241113 DOI: 10.1021/acs.langmuir.9b03400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrodeposition is a powerful tool for the bottom-up fabrication of novel electronic devices. This necessitates a complete understanding of the deposition process beyond the classical description using current transients. Recent calculations predict deviations within the spatial arrangement of electrodeposited particles, away from random nucleation. The spatial arrangement of Au particles generated through aqueous electrodeposition on a nontemplated substrate is investigated by grazing incidence small-angle X-ray scattering (GISAXS). We show that GISAXS is able to reveal spatial correlations within deposited particles that are not easily detectable by microscopy.
Collapse
Affiliation(s)
- Gilles E Moehl
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Philip N Bartlett
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Andrew L Hector
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
12
|
Thakur M, Medintz IL, Walper SA. Enzymatic Bioremediation of Organophosphate Compounds-Progress and Remaining Challenges. Front Bioeng Biotechnol 2019; 7:289. [PMID: 31781549 PMCID: PMC6856225 DOI: 10.3389/fbioe.2019.00289] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Organophosphate compounds are ubiquitously employed as agricultural pesticides and maintained as chemical warfare agents by several nations. These compounds are highly toxic, show environmental persistence and accumulation, and contribute to numerous cases of poisoning and death each year. While their use as weapons of mass destruction is rare, these never fully disappear into obscurity as they continue to be tools of fear and control by governments and terrorist organizations. Beyond weaponization, their wide-scale dissemination as agricultural products has led to environmental accumulation and intoxication of soil and water across the globe. Therefore, there is a dire need for rapid and safe agents for environmental bioremediation, personal decontamination, and as therapeutic detoxicants. Organophosphate hydrolyzing enzymes are emerging as appealing targets to satisfy decontamination needs owing to their ability to hydrolyze both pesticides and nerve agents using biologically-derived materials safe for both the environment and the individual. As the release of genetically modified organisms is not widely accepted practice, researchers are exploring alternative strategies of organophosphate bioremediation that focus on cell-free enzyme systems. In this review, we first discuss several of the more prevalent organophosphorus hydrolyzing enzymes along with research and engineering efforts that have led to an enhancement in their activity, substrate tolerance, and stability. In the later half we focus on advances achieved through research focusing on enhancing the catalytic activity and stability of phosphotriesterase, a model organophosphate hydrolase, using various approaches such as nanoparticle display, DNA scaffolding, and outer membrane vesicle encapsulation.
Collapse
Affiliation(s)
- Meghna Thakur
- College of Science, George Mason University, Fairfax, VA, United States
| | - Igor L Medintz
- Center for Bio/Molecular Sciences, U.S. Naval Research Laboratory, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Sciences, U.S. Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
13
|
TMB-assembly as nanosubstrate construction colorimetric kit for highly sensitive and selective detection of H2O2 and monoamine oxidase-A based on Fenton reaction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Alarcón-Correa M, Günther JP, Troll J, Kadiri VM, Bill J, Fischer P, Rothenstein D. Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity. ACS NANO 2019; 13:5810-5815. [PMID: 30920792 DOI: 10.1021/acsnano.9b01408] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood, where the enzyme-driven micropump can be powered at the physiological blood-urea concentrations.
Collapse
Affiliation(s)
- Mariana Alarcón-Correa
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Jan-Philipp Günther
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Jonas Troll
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Vincent Mauricio Kadiri
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Joachim Bill
- Institute for Materials Science , University of Stuttgart , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Dirk Rothenstein
- Institute for Materials Science , University of Stuttgart , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
| |
Collapse
|
15
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Gajewska B, Raccio S, Rodriguez KJ, Bruns N. Chlorophyll derivatives as catalysts and comonomers for atom transfer radical polymerizations. Polym Chem 2019. [DOI: 10.1039/c8py01492b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Derivatives of chlorophyll were investigated as both catalysts and comonomers to generate well-defined polymers with narrow dispersities under AGET ATRP conditions.
Collapse
Affiliation(s)
| | | | | | - Nico Bruns
- Adolphe Merkle Institute
- 1700 Fribourg
- Switzerland
- Department of Pure and Applied Chemistry
- University of Strathclyde
| |
Collapse
|
17
|
Schubert J, Radeke C, Fery A, Chanana M. The role of pH, metal ions and their hydroxides in charge reversal of protein-coated nanoparticles. Phys Chem Chem Phys 2019; 21:11011-11018. [DOI: 10.1039/c8cp05946b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we investigated charge inversion of protein-coated Au nanoparticles caused by the addition of metal ions. Adsorbed metal hydroxides were identified to cause the charge inversion of the NPs by using a combination of cryo-TEM, EFTEM andζ-potential measurements.
Collapse
Affiliation(s)
- Jonas Schubert
- Leibniz Institute of Polymer Research Dresden
- 01069 Dresden
- Germany
- Physical Chemistry of Polymer Materials
- Technische Universität Dresden
| | - Carmen Radeke
- Leibniz Institute of Polymer Research Dresden
- 01069 Dresden
- Germany
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden
- 01069 Dresden
- Germany
- Physical Chemistry of Polymer Materials
- Technische Universität Dresden
| | - Munish Chanana
- Institute of Building Materials
- ETH Zürich
- Zürich
- Switzerland
- Department of Physical Chemistry II
| |
Collapse
|
18
|
Rodriguez KJ, Gajewska B, Pollard J, Pellizzoni MM, Fodor C, Bruns N. Repurposing Biocatalysts to Control Radical Polymerizations. ACS Macro Lett 2018; 7:1111-1119. [PMID: 35632946 DOI: 10.1021/acsmacrolett.8b00561] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reversible-deactivation radical polymerizations (controlled radical polymerizations) have revolutionized and revitalized the field of polymer synthesis. While enzymes and other biologically derived catalysts have long been known to initiate free radical polymerizations, the ability of peroxidases, hemoglobin, laccases, enzyme-mimetics, chlorophylls, heme, red blood cells, bacteria, and other biocatalysts to control or initiate reversible-deactivation radical polymerizations has only been described recently. Here, the scope of biocatalytic atom transfer radical polymerizations (bioATRP), enzyme-initiated reversible addition-fragmentation chain transfer radical polymerizations (bioRAFT), biocatalytic organometallic-mediated radical polymerizations (bioOMRP), and biocatalytic reversible complexation mediated polymerizations (bioRCMP) is critically reviewed, and the potential of these reactions for the environmentally friendly synthesis of precision polymers, for the preparation of functional nanostructures, for the modification of surfaces, and for biosensing is discussed.
Collapse
Affiliation(s)
- Kyle J. Rodriguez
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bernadetta Gajewska
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jonas Pollard
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Csaba Fodor
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
19
|
Jiang W, Pan Y, Yang J, Liu Y, Yang Y, Tang J, Li Q. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks. J Colloid Interface Sci 2018; 521:62-68. [DOI: 10.1016/j.jcis.2018.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 11/16/2022]
|