1
|
Monem A, Habibi D, Goudarzi H. A potential DES catalyst for the fast and green synthesis of benzochromenopyrimidines and pyranopyrimidines. Sci Rep 2024; 14:18924. [PMID: 39147849 PMCID: PMC11327281 DOI: 10.1038/s41598-024-69817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
A gentisic acid based-Deep Eutectic Solvent (MTPPBr/GA-DES) was synthesized by mixing one mole of methyl triphenylphosphonium bromide (MTPPBr) and one mole of gentisic acid (GA: 2,5-dihydroxy-benzoic acid) based on the eutectic point phase diagram. Then, it was characterized by FT-IR, NMR, densitometer, and TGA/DTA techniques and used as a potent and novel catalyst for the fast and green synthesis of: (i) Five new 2(a-e) and five known 2(f-j) benzo[6,7]chromeno[2,3-d]pyrimidines and (ii) One new (3a) and eleven known 3(b-l) pyrano[2,3-d]pyrimidines, in solvent-free conditions, short reaction times, and high yields. It is important to mention that for the synthesis of 2(a-j), there is only one reference which states that the reaction times are extremely long (720-2400 min), while these times are reduced to approximately 35-50 min in our proposed strategy, indicatinging that the rate of reactions will be 20-48 times faster, which is the clear and most obvious advantage of our approach.
Collapse
Affiliation(s)
- Arezo Monem
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Hadis Goudarzi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
2
|
Momeni S, Ghorbani-Vaghei R. Copper Immobilized on Modified LDHs as a Novel Efficient Catalytic System for Three-Component Synthesis of Pyrano[2,3- d]pyrimidine and pyrazolo[4',3':5,6]pyrano[2,3- d]pyrimidine Derivatives. ACS OMEGA 2024; 9:10332-10342. [PMID: 38463312 PMCID: PMC10918776 DOI: 10.1021/acsomega.3c07913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
A novel catalyst based on layered double hydroxides coated with copper nitrate [LDH@(3-chloropropyl)trimethoxysilane@N1,N4-bis(4,6-diamino-1,3,5-triazin-2-yl)benzene-1,4-disulfonamide@Cu] was successfully synthesized. The structure of the new synthesized catalyst was investigated and confirmed using different analytical techniques, such as Fourier-transform infrared spectroscopy (FTIR), energy-scattered X-ray spectroscopy (EDX) mapping, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and heat gravity/heat derivatization (TGA/DSC). The skilled catalyst proved its efficiency for one-pot three-component synthesis of pyrano[2,3-d]pyrimidine and new dihydropyrazolo[4',3':5,6]pyrano[2,3-d]pyrimidine-dione derivatives. Using this efficient catalyst, products were synthesized with a high yield, in a short time, and under soft and solvent-free conditions. The catalyst can be recovered and reused four times without a significant loss of efficiency.
Collapse
Affiliation(s)
- Sarieh Momeni
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 65174, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 65174, Iran
| |
Collapse
|
3
|
Nguyen HT, Nguyen Van H, Hoang Thi P, Thi TAD, Le‐Nhat‐Thuy G, Nguyen Thi QG, Tuan AN, Ba Thi C, Tran Quang H, Van Nguyen T. Synthesis and Cytotoxic Evaluation of New Fluoro and Trifluoromethyl Substituents Containing Chromeno[2,3‐
d
]pyrimidines. ChemistrySelect 2023. [DOI: 10.1002/slct.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Ha Nguyen Van
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Military Institute of Chemistry and Environment, An Khanh Hoai Duc Ha Noi Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Giang Le‐Nhat‐Thuy
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Anh Nguyen Tuan
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Cham Ba Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Hung Tran Quang
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
4
|
Sayed MM, Abdel-Hakim M, Mahross MH, Aly KI. Synthesis, physico-chemical characterization, and environmental applications of meso porous crosslinked poly (azomethine-sulfone)s. Sci Rep 2022; 12:12878. [PMID: 35896584 PMCID: PMC9329479 DOI: 10.1038/s41598-022-17042-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
To develop innovative mesoporous crosslinked poly(azomethine- sulfone)s with environmental applications, a simple Schiff base condensation technique based on barbituric acid BA or condensed terephthaldehyde barbituric acid TBA in their structures as monomeric units are applied. Different analysis methodologies and viscosity measurements identify them as having stronger heat stability and an amorphous structure. The photophysical features of the multi stimuli response MSR phenomenon are observable, with white light emission at higher concentrations and blue light emission at lower concentrations. Their emission characteristics make them an excellent metal ions sensor through diverse charge transfer methods. They can have a better inhibition efficiency and be employed as both mixed-type and active corrosion inhibitors according to their fluorescence emission with metals, demonstrating their capacity to bind with diverse metals. The adsorption of two distinct dye molecules, Methylene blue MB cationic and sunset yellow SY anionic, on the mesoporous structures of the polymers is investigated, revealing their selectivity for MB dye adsorption. Quantum studies support these amazing discoveries, demonstrating a crab-like monomeric unit structure for the one that is heavily crosslinked.
Collapse
Affiliation(s)
- Marwa M Sayed
- Chemistry Department, Faculty of Science, New Valley University, El- Kharga, 72511, Egypt.
| | - Mohamed Abdel-Hakim
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Mahmoud H Mahross
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Kamal I Aly
- Polymer Laboratory 122, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
5
|
Hartwig D, Soares LK, Dapper LH, Nascimento JER, Lenardão EJ. Dicarbonyl compounds in the synthesis of heterocycles under green conditions. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbon–carbon and carbon-heteroatom bond forming reactions are strategically employed for the generation of a variety of heterocyclic systems. This class of compounds represents the most general structural unit, present in many natural compounds. They are recognized for their valuable biologically properties and wide range of applications in medicinal, pharmaceutical, and other related fields of chemistry. This is an updated review on the use of dicarbonyl compounds under environmentally friendly conditions to access a series of heterocyclic structures, e.g., quinoxaline, quinazolinones, benzochalcogenazoles, indoles, among others. Synthetic protocols involving copper-catalyzed, multicomponent and cascade reactions, decarboxylative cyclization, recycling of CO2, and electrochemical approaches are presented and discussed.
Collapse
Affiliation(s)
- Daniela Hartwig
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Liane K. Soares
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Luiz H. Dapper
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - José E. R. Nascimento
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| |
Collapse
|
6
|
Ziarani GM, Khademi M, Mohajer F, Yadav S, Tomar R. Recent Advances in the Application of Barbituric Acid Derivatives in Multicomponent Reactions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272826666211229150318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Barbituric acid is a pyrimidine heterocyclic organic compound, which is pharmacologically active. It is important to build structures containing various medicinal activities. This compound attracts the scientific research community in organic synthesis. It can be used in the synthesis of polyheterocyclic, natural, medicinal compounds, and organic sensors. Herein, the utilization of barbituric or thiobarbituric acid in multicomponent reactions is reported from 2016-2021 in this manuscript.
Collapse
Affiliation(s)
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran Iran
| | - Sangeete Yadav
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, India
| | - Ravi Tomar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, India
| |
Collapse
|
7
|
Hrubša M, Nurjamal K, Carazo A, Nayek N, Karlíčková J, Applová L, Karmakar I, Parvin S, Fadraersada J, Macáková K, Mladěnka P, Brahmachari G. Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs. Med Chem 2021; 18:536-543. [PMID: 34702153 DOI: 10.2174/1573406417666211026150658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/03/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. OBJECTIVE The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. METHODS Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. RESULTS In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug acetylsalicylic acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase-1. CONCLUSION The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3-carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.
Collapse
Affiliation(s)
- Marcel Hrubša
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Khondekar Nurjamal
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| | - Alejandro Carazo
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Nayana Nayek
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| | - Jana Karlíčková
- The Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Lenka Applová
- The Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Indrajit Karmakar
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| | - Shamima Parvin
- The Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Jaka Fadraersada
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Kateřina Macáková
- The Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové. Czech Republic
| | - Goutam Brahmachari
- The Department of Chemistry, Visva-Bharati (Central University), Santiniketan. India
| |
Collapse
|
8
|
Brahmachari G, Begam S, Karmakar I, Gupta VK. Development of a straightforward and efficient protocol for the one-pot multicomponent synthesis of substituted alpha-aminoallylphosphonates under catalyst-free condition. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1920593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Vivek K Gupta
- Department of Physics, University of Jammu, Jammu-Tawi, India
| |
Collapse
|
9
|
El-Mekabaty A, Etman HA, Mosbah A, Fadda AA. Reactivity of Barbituric, Thiobarbituric Acids and Their Related Analogues: Synthesis of Substituted and Heterocycles-based Pyrimidines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200608134859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Barbituric, thiobarbituric acids and their related analogs are reactive synthons for
the synthesis of drugs and biologically, and pharmaceutically active pyrimidines. The present
review aimed to summarize the recent advances in the synthesis of different alkylsubstituted,
fused cycles, spiro-, and binary heterocycles incorporated pyrimidine skeleton
based on barbituric derivatives. In this sequence, the eco-friendly techniques under catalytic
conditions were used for the diverse types of multicomponent reactions under different
conditions for the synthesis of various types of heterocycles. Nano-catalysts are efficient for
the synthesis of these compounds in high yields and effective catalyst reusability. The compounds
are potent antibacterial, cytotoxic, xanthine oxidase inhibitory activities, and attend
as urease inhibitors. The projected mechanisms for the synthesis of pyranopyrimidines, benzochromenopyrimidines,
chromeno-pyranopyrimidines, spiroxyindoles, oxospiro-tricyclic furopyrimidines, pyrimidine-based monoand
bicyclic pyridines were discussed. The potent and diverse biological activities for instance, antioxidant,
antibacterial, cytotoxic, and xanthine oxidase inhibitory activities, as well as urease inhibitors, are specified.
Collapse
Affiliation(s)
- Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Hassan A. Etman
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Ahmed Mosbah
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Ahmed A. Fadda
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| |
Collapse
|
10
|
Brahmachari G. Catalyst‐ and Additive‐Free Decarboxylative C‐4 Phosphorylation of Coumarin‐3‐Carboxylic Acids at Ambient Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731 235 West Bengal India
| |
Collapse
|
11
|
Brahmachari G, Nayek N, Karmakar I, Nurjamal K, Chandra SK, Bhowmick A. Series of Functionalized 5-(2-Arylimidazo[1,2- a]pyridin-3-yl)pyrimidine-2,4(1 H,3 H)-diones: A Water-Mediated Three-Component Catalyst-Free Protocol Revisited. J Org Chem 2020; 85:8405-8414. [PMID: 32469216 DOI: 10.1021/acs.joc.0c00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A water-mediated and catalyst-free practical method for the synthesis of a new series of pharmaceutically interesting functionalized 5-(2-arylimidazo[1,2-a]pyridin-3-yl)pyrimidine-2,4(1H,3H)-diones has been accomplished based on a one-pot multicomponent reaction between arylglyoxal monohydrates, 2-aminopyridines/2-aminopyrimidine, and barbituric/N,N-dimethylbarbituric acids under reflux conditions. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvents, use of water as reaction medium, clean reaction profiles, operational simplicity, ease of product isolation/purification without the aid of tedious column chromatography, good to excellent yields, and high atom-economy and low E-factor.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731 235, West Bengal, India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731 235, West Bengal, India
| | - Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731 235, West Bengal, India
| | - Swapan K Chandra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731 235, West Bengal, India
| | - Anindita Bhowmick
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731 235, West Bengal, India
| |
Collapse
|
12
|
Chen X, Wang M, Zhang X, Fan X. A novel synthesis of diversely functionalized 1,2,4-triones through the homo- and cross-coupling reactions of β-keto sulfoxonium ylides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Brahmachari G, Mandal M. One‐pot multicomponent synthesis of a new series of curcumin‐derived 4
H
‐pyrans under ambient conditions. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva‐Bharati (a Central University) Santiniketan West Bengal 731 235 India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva‐Bharati (a Central University) Santiniketan West Bengal 731 235 India
| |
Collapse
|
14
|
Brahmachari G, Karmakar I. sp
2-C-H Acetoxylation of Diversely Substituted (E
)-1-(Arylmethylene)-2-phenylhydrazines Using PhI(OAc)2
as Acetoxy Source at Ambient Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati(a Central University); 731 235 Santiniketan- West Bengal India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati(a Central University); 731 235 Santiniketan- West Bengal India
| |
Collapse
|
15
|
Brahmachari G, Nurjamal K. Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Brahmachari G, Begam S. Ceric Ammonium Nitrate (CAN): An Efficient and Eco‐Friendly Catalyst for One‐Pot Synthesis of Diversely Functionalized Biscoumarins in Aqueous Medium under Ambient Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201900961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University), Santiniketan- 731 235 West Bengal India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University), Santiniketan- 731 235 West Bengal India
| |
Collapse
|
17
|
Bhayye SS, Brahmachari G, Nayek N, Roy S, Roy K. Target prioritization of novel substituted 5-aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H)-triones as anticancer agents using in-silico approach. J Biomol Struct Dyn 2019; 38:1415-1424. [DOI: 10.1080/07391102.2019.1606735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sagar S. Bhayye
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | - Sujata Roy
- Department of Biotechnology Rajalakshmi Engineering College, Thandalam, Chennai, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Jadavpur University, Kolkata, India
| |
Collapse
|
18
|
Nurjamal K, Brahmachari G. Sodium Formate-Catalyzed One-Pot Synthesis of Functionalized Spiro[indoline-3,5′-pyrido[2,3-d
]pyrimidine]/Spiro[acenaphthylene-1,5′-pyrido[2,3-d
]-pyrimidine] Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201803508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (a Central University); Santiniketan- 731 235, West Bengal India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (a Central University); Santiniketan- 731 235, West Bengal India
| |
Collapse
|
19
|
Brahmachari G, Karmakar I. Diversely Functionalized
N
‐Alkyl/Substituted alkyl,
S
‐2‐nitro‐1‐arylethyl Dithiocarbamates: Green Synthesis, Large Scale Application, and Insights in Reaction Mechanism. ChemistrySelect 2019. [DOI: 10.1002/slct.201803531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University) Santiniketan- 731 235, West Bengal India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University) Santiniketan- 731 235, West Bengal India
| |
Collapse
|
20
|
Brahmachari G, Nayek N. A Facile Synthetic Route to Biologically Relevant Substituted 1,4-Naphthoquinonyl-2-oxoindolinylpyrimidines Under Metal-Free Organocatalytic Conditions. ChemistrySelect 2018. [DOI: 10.1002/slct.201800462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (A Central University); Santiniketan-731 235, West Bengal India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (A Central University); Santiniketan-731 235, West Bengal India
| |
Collapse
|
21
|
Brahmachari G, Begam S, Nurjamal K. Sulfamic Acid‐Catalyzed One‐Pot Synthesis of a New Series of Biologically Relevant Indole‐Uracil Molecular Hybrids in Water at Room Temperature. ChemistrySelect 2018. [DOI: 10.1002/slct.201800488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva-Bharati (A Central University) Santiniketan- 731 235, West Bengal India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva-Bharati (A Central University) Santiniketan- 731 235, West Bengal India
| | - Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva-Bharati (A Central University) Santiniketan- 731 235, West Bengal India
| |
Collapse
|
22
|
Halimehjani AZ, Keshavarzi N. One-pot Three-component Route for the Synthesis of Functionalized 4H
-chromenes Catalyzed by ZrOCl2
·8H2
O in Water. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Nahid Keshavarzi
- Department of Chemistry; Sharif University of Technology; P.O. Box 11465-9516 Tehran Iran
| |
Collapse
|