1
|
Piñeres-Quiñones OH, Oñate-Socarras MK, Wang F, Lynn DM, Acevedo-Vélez C. Pickering Emulsions of Thermotropic Liquid Crystals Stabilized by Amphiphilic Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320298 DOI: 10.1021/acs.langmuir.3c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We report emulsions of thermotropic liquid crystals (LCs) in water that are stabilized using amphiphilic gold nanoparticles (AuNPs) and retain their ability to respond to aqueous analytes for extended periods (e.g., up to 1 year after preparation). These LC emulsions exhibit exceptional colloidal stability that results from the adsorption of AuNPs that are functionalized with thiol-terminated poly(ethylene glycol) (PEG-thiol) and hexadecanethiol (C16-thiol) to LC droplet interfaces. These stabilized LC emulsions respond to the presence of model anionic (SDS), cationic (C12TAB), and nonionic (C12E4) surfactants in the surrounding aqueous media, as evidenced by ordering transitions in the LC droplets that can be readily observed using polarized light microscopy. Our results reveal significant differences in the sensitivity of the stabilized LC droplets toward each of these analytes. In particular, these stabilized droplets can detect the cationic C12TAB at concentrations that are lower than those required for bare LC droplets under similar experimental conditions (0.5 and 2 mM, respectively). These results demonstrate an enhanced sensitivity of the LC toward C12TAB when the PEG/C16-thiol-coated AuNPs are adsorbed at LC droplet interfaces. In contrast, the concentrations of SDS required to observe optical transformations in the stabilized LC droplets are higher than those required for the bare LC droplets, suggesting that the presence of the PEG/C16-thiol AuNPs reduces the sensitivity of the LC toward this analyte. When combined, our results show that this Pickering stabilization approach using amphiphilic AuNPs as stabilizing agents for LC-in-water emulsions provides a promising platform for developing LC droplet-based optical sensors with long-term colloidal stability as well as opportunities to tune the sensitivity and selectivity of the response to target aqueous analytes.
Collapse
Affiliation(s)
- Oscar H Piñeres-Quiñones
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| | - Maria K Oñate-Socarras
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| | - Fengrui Wang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| |
Collapse
|
2
|
Concellón A. Liquid Crystal Emulsions: A Versatile Platform for Photonics, Sensing, and Active Matter. Angew Chem Int Ed Engl 2023:e202308857. [PMID: 37694542 DOI: 10.1002/anie.202308857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/12/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The self-assembly of liquid crystals (LCs) is a fascinating method for controlling the organization of discrete molecules into nanostructured functional materials. Although LCs are traditionally processed in thin films, their confinement within micrometre-sized droplets has recently revealed new properties and functions, paving the way for next-generation soft responsive materials. These recent findings have unlocked a wealth of unprecedented applications in photonics (e.g. reflectors, lasing materials), sensing (e.g. biomolecule and pathogen detection), soft robotics (e.g. micropumps, artificial muscles), and beyond. This Minireview focuses on recent developments in LC emulsion designs and highlights a variety of novel potential applications. Perspectives on the opportunities and new directions for implementing LC emulsions in future innovative technologies are also provided.
Collapse
Affiliation(s)
- Alberto Concellón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
3
|
Aery S, Parry A, Araiza-Calahorra A, Evans SD, Gleeson HF, Dan A, Sarkar A. Ultra-stable liquid crystal droplets coated by sustainable plant-based materials for optical sensing of chemical and biological analytes. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:5831-5845. [PMID: 37153011 PMCID: PMC10158717 DOI: 10.1039/d3tc00598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Herein, we demonstrate for the first time the synthesis of ultra-stable, spherical, nematic liquid crystal (LC) droplets of narrow size polydispersity coated by sustainable, biodegradable, plant-based materials that trigger a typical bipolar-to-radial configurational transition in dynamic response to chemical and biological analytes. Specifically, a highly soluble polymer, potato protein (PoP) and a physically-crosslinked potato protein microgel (PoPM) of ∼100 nm in diameter, prepared from the PoP, a byproduct of the starch industry, were compared for their ability to coat LC droplets. Although both PoP and PoPM were capable of reducing the interfacial tension between water and n-tetradecane <30 mN m-1, PoPM-coated LC droplets showed better stability than the PoP-coated droplets via a Pickering-like mechanism. Strikingly, the Pickering LC droplets outperformed PoP-stabilized droplets in terms of dynamic response with 5× lower detection limit to model chemical analytes (sodium dodecyl sulphate, SDS) due to the difference in SDS-binding features between the protein and the microgel. To eliminate the effect of size polydispersity on the response, monodisperse Pickering LC droplets of diameter ∼16 μm were additionally obtained using microfluidics, which mirrored the response to chemical as well as biological analytes, i.e., primary bile acid, an important biomarker of liver diseases. We demonstrate that these eco-friendly microgels used for creating monodisperse, ultra-stable, LC complex colloids are powerful templates for fabricating next generation, sustainable optical sensors for early diagnosis in clinical settings and other sensing applications.
Collapse
Affiliation(s)
- Shikha Aery
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| | - Adele Parry
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Andrea Araiza-Calahorra
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat Haringhata West Bengal 741249 India
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| |
Collapse
|
4
|
Stabilizing liquid crystal droplets with hydrogel films and its application in monitoring adenosine triphosphate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
6
|
Zhan X, Liu Y, Yang KL, Luo D. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. BIOSENSORS 2022; 12:577. [PMID: 36004973 PMCID: PMC9406035 DOI: 10.3390/bios12080577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
As an emerging stimuli-responsive material, liquid crystal (LC) has attracted great attentions beyond display applications, especially in the area of biochemical sensors. Its high sensitivity and fast response to various biological or chemical analytes make it possible to fabricate a simple, real-time, label-free, and cost-effective LC-based detection platform. Advancements have been achieved in the development of LC-based sensors, both in fundamental research and practical applications. This paper briefly reviews the state-of-the-art research on LC sensors in the biochemical field, from basic properties of LC material to the detection mechanisms of LC sensors that are categorized into LC-solid, LC-aqueous, and LC droplet platforms. In addition, various analytes detected by LCs are presented as a proof of the application value, including metal ions, nucleic acids, proteins, glucose, and some toxic chemical substances. Furthermore, a machine-learning-assisted LC sensing platform is realized to provide a foundation for device intelligence and automatization. It is believed that a portable, convenient, and user-friendly LC-based biochemical sensing device will be achieved in the future.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| |
Collapse
|
7
|
Rajesh R, Gangwar LK, Mishra SK, Choudhary A, Biradar AM, Sumana G. Technological Advancements in Bio‐recognition using Liquid Crystals: Techniques, Applications, and Performance. LUMINESCENCE 2022. [PMID: 35347826 DOI: 10.1002/bio.4242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/10/2022]
Abstract
The application of liquid crystal (LC) materials has undergone a modern-day renaissance from its classical use in electronics industry as display devices to new-fangled techniques for optically detecting biological and chemical analytes. This review article deals with the emergence of LC materials as invaluable material for their use as label-free sensing elements in the development of optical, electro-optical and electrochemical biosensors. The property of LC molecules to change their orientation on perturbation by any external stimuli or on interaction with bioanalytes or chemical species has been utilized by many researches for the fabrication of high sensitive LC-biosensors. In this review article we categorized LC-biosensor based on biomolecular reaction mechanism viz. enzymatic, nucleotides and immunoreaction in conjunction with operating principle at different LC interface namely LC-solid, LC-aqueous and LC-droplets. Based on bimolecular reaction mechanism, the application of LC has been delineated with recent progress made in designing of LC-interface for the detection of bio and chemical analytes of proteins, virus, bacteria, clinically relevant compounds, heavy metal ions and environmental pollutants. The review briefly describes the experimental set-ups, sensitivity, specificity, limit of detection and linear range of various viable and conspicuous LC-based biosensor platforms with associated advantages and disadvantages therein.
Collapse
Affiliation(s)
- Rajesh Rajesh
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Lokesh K. Gangwar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | | | - Amit Choudhary
- Physics Department Deshbandhu College (University of Delhi) Kalkaji New Delhi India
| | - Ashok M. Biradar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Gajjala Sumana
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| |
Collapse
|
8
|
Piñeres-Quiñones OH, Lynn DM, Acevedo-Vélez C. Environmentally Responsive Emulsions of Thermotropic Liquid Crystals with Exceptional Long-Term Stability and Enhanced Sensitivity to Aqueous Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:957-967. [PMID: 35001623 DOI: 10.1021/acs.langmuir.1c02278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report colloidally stable emulsions of thermotropic liquid crystals (LCs) that can detect the presence of amphiphilic analytes in aqueous environments. Our approach makes use of a Pickering stabilization strategy consisting of surfactant-nanoparticle complexes (SiO2/CnTAB, n = 8, 12, 16) that adsorb to aqueous/LC droplet interfaces. This strategy can stabilize LC emulsions against coalescence for at least 3 months. These stabilized LC emulsions also retain the ability to respond to the presence of model anionic, cationic, and nonionic amphiphiles (e.g., SDS, C12TAB, C12E4) in aqueous solutions by undergoing "bipolar-to-radial" changes in LC droplet configurations that can be readily observed and quantified using polarized light microscopy. Our results reveal these ordering transitions to depend upon the length of the hydrocarbon tail of the CnTAB surfactant used to form the stabilizing complexes. In general, increasing CnTAB surfactant tail length leads to droplets that respond at lower analyte concentrations, demonstrating that this Pickering stabilization strategy can be used to tune the sensitivities of the stabilized LC droplets. Finally, we demonstrate that these colloidally stable LC droplets can report the presence of rhamnolipid, a biosurfactant produced by the bacterial pathogen Pseudomonas aeruginosa. Overall, our results demonstrate that this Pickering stabilization strategy provides a useful tool for the design of LC droplet-based sensors with substantially improved colloidal stability and new strategies to tune their sensitivities. These advances could increase the potential practical utility of these responsive soft materials as platforms for the detection and reporting of chemical and biological analytes.
Collapse
Affiliation(s)
- Oscar H Piñeres-Quiñones
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| |
Collapse
|
9
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
11
|
Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing. ACS NANO 2021; 15:9299-9327. [PMID: 34028246 PMCID: PMC8291770 DOI: 10.1021/acsnano.1c02495] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.
Collapse
Affiliation(s)
- Juan Wang
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Pepijn W. H. Pinkse
- Complex
Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jan C. T. Eijkel
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
12
|
Wang Z, Xu T, Noel A, Chen YC, Liu T. Applications of liquid crystals in biosensing. SOFT MATTER 2021; 17:4675-4702. [PMID: 33978639 DOI: 10.1039/d0sm02088e] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid crystals (LCs), as a promising branch of highly-sensitive, quick-response, and low-cost materials, are widely applied to the detection of weak external stimuli and have attracted significant attention. Over the past decade, many research groups have been devoted to developing LC-based biosensors due to their self-assembly potential and functional diversity. In this paper, recent investigations on the design and application of LC-based biosensors are reviewed, based on the phenomenon that the orientation of LCs can be directly influenced by the interactions between biomolecules and LC molecules. The sensing principle of LC-based biosensors, as well as their signal detection by probing interfacial interactions, is described to convert, amplify, and quantify the information from targets into optical and electrical parameters. Furthermore, commonly-used LC biosensing targets are introduced, including glucose, proteins, enzymes, nucleic acids, cells, microorganisms, ions, and other micromolecules that are critical to human health. Due to their self-assembly potential, chemical diversity, and high sensitivity, it has been reported that tunable stimuli-responsive LC biosensors show bright perspectives and high superiorities in biological applications. Finally, challenges and future prospects are discussed for the fabrication and application of LC biosensors to both enhance their performance and to realize their promise in the biosensing industry.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | |
Collapse
|
13
|
Jana PK, Lam J, Mangal R, Alava MJ, Parveen N, Laurson L. Impurity-induced nematic-isotropic transition of liquid crystals. Phys Chem Chem Phys 2021; 23:8825-8835. [PMID: 33876042 DOI: 10.1039/d0cp06577c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex fluids made of liquid crystals (LCs) and small molecules, surfactants, nanoparticles or 1D/2D nanomaterials show novel and interesting features, making them suitable materials for various applications starting from optoelectronics to biosensing. While these additives (impurities) introduce new features in the complex fluids, they may also alter the phase transition behaviour of LCs depending on the physiochemical properties of the added impurity. This article reports on the phase transition of 4-cyano-4'-alkylbiphenyl (nCB) LCs in the presence of an associative impurity, i.e., water and a non-associative impurity, i.e., hexane employing computational methods and experiments. In particular, all-atom (AA) simulations and coarse-grained (CG) models were designed for two complex systems, i.e., 6CB + water and 6CB + hexane and corresponding spectrophotometry experiments were performed using a homologous LC, i.e., 5CB. Results from the simulations and experiments elucidate that the phase transition of LCs depends on the mixing/demixing phenomenon of the impurity in the LC. While associative liquids like water which do not mix with LCs do not influence the nematic-to-isotropic phase transition of LCs, hexane, being a non-associative liquid, mixes well with LCs and induces a sharp impurity-induced nematic-to-isotropic phase transition. Upon application of both AA and CG simulations, we could reach the conclusion that the mixing/demixing phenomenon in an LC + impurity system influences the entropy of the system and hence the observed phase transitions are entropy-driven.
Collapse
Affiliation(s)
- Pritam Kumar Jana
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, Finland.
| | | | | | | | | | | |
Collapse
|
14
|
Yuan Z, Tan X, Gong X, Gong C, Cheng X, Feng S, Fan X, Chen YC. Bioresponsive microlasers with tunable lasing wavelength. NANOSCALE 2021; 13:1608-1615. [PMID: 33439198 DOI: 10.1039/d0nr07921a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lasing particles are emerging tools for amplifying light-matter interactions at the biointerface by exploiting its strong intensity and miniaturized size. Recent advances in implementing laser particles into living cells and tissues have opened a new frontier in biological imaging, monitoring, and tracking. Despite remarkable progress in micro- and nanolasers, lasing particles with surface functionality remain challenging due to the low mode-volume while maintaining a high Q-factor. Herein, we report the novel concept of bioresponsive microlasers by exploiting interfacial energy transfer based on whispering-gallery-mode (WGM) microdroplet cavities. Lasing wavelengths were manipulated by energy transfer-induced changes of a gain spectrum resulting from the binding molecular concentrations at the cavity surface. Both protein-based and enzymatic-based interactions were demonstrated, shedding light on the development of functional microlasers. Finally, tunable lasing wavelengths over a broad spectral range were achieved by selecting different donor/acceptor pairs. This study not only opens new avenues for biodetection, but also provides deep insights into how molecules modulate laser light at the biointerface, laying the foundation for the development of smart bio-photonic devices at the molecular level.
Collapse
Affiliation(s)
- Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Damberga D, Fedorenko V, Grundšteins K, Altundal Ş, Šutka A, Ramanavičius A, Coy E, Mrówczyński R, Iatsunskyi I, Viter R. Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2438. [PMID: 33291264 PMCID: PMC7762110 DOI: 10.3390/nano10122438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Polydopamine (PDA) is a new biocompatible material, which has prospects in biomedical and sensor applications. Due to functional groups, it can host wide range of biomolecules. ZnO nanostructures are well known templates for optical sensors and biosensors. The combination of ZnO and PDA results in a change of optical properties of ZnO-PDA composites as a shift of photoluminescence (PL) peaks and PL quenching. However, to date, the effect of the PDA layer on fundamental properties of ZnO-PDA nanostructures has not been studied. The presented paper reports on optical and surface properties of novel ZnO-PDA nanocomposites. PDA layers were chemically synthesized on ZnO nanostructures from different solution concentrations of 0.3, 0.4, 0.5 and 0.7 mg/mL. Structure, electronic and optical properties were studied by SEM, Raman, FTIR, diffuse reflectance and photoluminescence methods. The Z-potential of the samples was evaluated in neutral pH (pH = 7.2). The response of the samples towards poly-l-lysine adsorption, as a model molecule, was studied by PL spectroscopy to evaluate the correlation between optical and surface properties. The role of the PDA concentration on fundamental properties was discussed.
Collapse
Affiliation(s)
- Daina Damberga
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Viktoriia Fedorenko
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Kārlis Grundšteins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Şahin Altundal
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Andris Šutka
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Arunas Ramanavičius
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio ave.3, LT-10257 Vilnius, Lithuania
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (E.C.); (R.M.)
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (E.C.); (R.M.)
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (E.C.); (R.M.)
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| |
Collapse
|
16
|
Abstract
Advances in switchable microlasers have emerged as a building block with immense potential in controlling light-matter interactions and integrated photonics. Compared to artificially designed interfaces, a stimuli-responsive biointerface enables a higher level of functionalities and versatile ways of tailoring optical responses at the nanoscale. However, switching laser emission with biological recognition has yet to be addressed, particularly with reversibility and wavelength tunability over a broad spectral range. Here we demonstrate a self-switchable laser exploiting the biointerface between label-free DNA molecules and dye-doped liquid crystal matrix in a Fabry-Perot microcavity. Laser emission switching among different wavelengths was achieved by utilizing DNA conformation changes as the switching power, which alters the orientation of the liquid crystals. Our findings demonstrate that different concentrations of single-stranded DNA lead to different temporal switching of lasing wavelengths and intensities. The lasing wavelength could be reverted upon binding with the complementary sequence through DNA hybridization process. Both experimental and theoretical studies revealed that absorption strength is the key mechanism accounting for the laser shifting behavior. This study represents a milestone in achieving a biologically controlled laser, shedding light on the development of programmable photonic devices at the sub-nanoscale by exploiting the complexity and self-recognition of biomolecules.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xuerui Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wenjie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
17
|
Hu Y, Han J, Guo R. Influence of the Alkyl Chain Length of the Imidazole Ionic Liquid-Type Surfactants on Their Aggregation Behavior with Sodium Dodecyl Sulfate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10494-10503. [PMID: 32787020 DOI: 10.1021/acs.langmuir.0c01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence of the alkyl chain length of the ionic liquid surfactants 1-hexadecyl-3-alkyl imidazolium bromide [C16imCn]Br (n = 2-16) on their aggregation behavior with sodium dodecyl sulfate (SDS) in water was studied. The rheological properties, thermostability, and microstructure of the samples were characterized via a combination of rheology, cryo-transmission electron microscopy, polarization optical microscopy, and small-angle X-ray scattering. Upon the addition of SDS, the [C16imCn]Br (n = 2, 4, 6) rodlike micelles transit into the gels with high water content. The effects of molar ratio and alkyl chain length on the viscoelasticity and thermal stability of the SDS/[C16imCn]Br (n = 2, 4, 6) gels were studied. However, the [C16imCn]Br (n = 8, 10, 12, 14, 16) rodlike micelles precipitate with the addition of SDS. The [C16imCn]Br (n = 10, 12, 14, 16) gels transit to the rodlike micelles with the proper addition of SDS. The mechanism of the influence of the alkyl chain length of the [C16imCn]Br on their aggregation behavior with SDS was proposed.
Collapse
Affiliation(s)
- Yimin Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
18
|
Dan A, Aery S, Zhang S, Baker DL, Gleeson HF, Sarkar A. Protein Microgel-Stabilized Pickering Liquid Crystal Emulsions Undergo Analyte-Triggered Configurational Transition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10091-10102. [PMID: 32787024 DOI: 10.1021/acs.langmuir.0c01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such as a whey protein microgel (WPM) to facilitate the analysis of analyte-induced configurational transition of the LC droplets. The WPM particles were able to irreversibly adsorb at the LC-water interface, and the resulting WPM-stabilized LC droplets possessed a remarkable stability against coalescence over time. Although the LC droplets were successfully protected by a continuous network of the WPM layer, the LC-water interface was still accessible for small molecules such as sodium dodecyl sulfate (SDS) that could diffuse through the meshes of the adsorbed WPM network or through the interfacial pores and induce an LC response. This approach was exploited to investigate the dynamic range of the WPM-stabilized LC droplet response to SDS. Nevertheless, the presence of the unadsorbed WPM in the aqueous medium reduced the access of SDS molecules to the LC droplets, thus suppressing the configuration transition. An improved LC response to SDS with a lower detection limit was achieved after washing off the unadsorbed WPM. Interestingly, the LC exhibited a detection limit as low as ∼0.85 mM for SDS within the initial WPM concentration ranging from 0.005 to 0.1 wt %. Furthermore, we demonstrate that the dose-response behavior was strongly influenced by the number of droplets exposed to the aqueous analytes and the type of surfactants such as anionic SDS, cationic dodecyltrimethylammonium bromide (DTAB), and nonionic tetra(ethylene glycol)monododecyl ether (C12E4). Thus, our results address key issues associated with the quantification of aqueous analytes and provide a promising colloidal platform toward the development of new classes of biocompatible LC droplet-based optical sensors.
Collapse
Affiliation(s)
- Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India
| | - Shikha Aery
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India
| | - Shuning Zhang
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Daniel L Baker
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen F Gleeson
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
19
|
Durey G, Ishii Y, Lopez-Leon T. Temperature-Driven Anchoring Transitions at Liquid Crystal/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9368-9376. [PMID: 32693599 DOI: 10.1021/acs.langmuir.0c00985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the anchoring of liquid crystal molecules at an interface with a water solution influences the entire organization of the underlying liquid crystal phase, which is crucial for many applications. The simplest way to stabilize such interfaces is by fabricating liquid crystal droplets in water; however, a greater sensitivity to interfacial effects can be achieved using liquid crystal shells, that is, spherical films of liquid crystal suspended in water. Anchoring transitions on those systems are traditionally triggered by the adsorption of surfactant molecules onto the interface, which is neither an instantaneous nor a reversible process. In this study, we report the ability to change the anchoring of 4-cyano-4'-pentylbiphenyl (5CB), one of the most widely used liquid crystals, at the interface with dilute water solutions of polyvinyl alcohol (PVA), a polymer commonly used for stabilizing liquid crystal shells, simply by controlling the temperature in the close vicinity of the liquid crystal clearing point. A quasi-static increase in temperature triggers an instantaneous reorientation of the molecules from parallel to perpendicular to the interfaces, owing to the local disordering effect of PVA on 5CB, prior to the phase transition of the bulk 5CB. We study this anchoring transition on both flat suspended films and spherical shells of liquid crystals. Switching anchoring entails a series of structural transformations involving the formation of transient structures in which topological defects are stabilized. The type of defect structure depends on the topology of the film. This method has the ability to influence both interfaces of the film nearly at the same time and can be applied to transform an initially polydisperse group of nematic shells into a monodisperse population of bivalent shells.
Collapse
Affiliation(s)
- Guillaume Durey
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, United States
| | - Yoko Ishii
- Department of Physics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8562, Japan
| | - Teresa Lopez-Leon
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
20
|
Zhang H, Jiao J, Jin H. Degradable poly-L-lysine-modified PLGA cell microcarriers with excellent antibacterial and osteogenic activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2391-2404. [PMID: 31184220 DOI: 10.1080/21691401.2019.1623230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The surface modification of polymeric materials has become critical for improving the bone repair capability of materials. In this study, we used a poly-L-lysine (PLL) coating method to prepare functional poly (lactic acid-glycolic acid) (PLGA) cell microcarriers, and bone morphogenetic protein 7 (BMP-7) and ponericin G1 were immobilized on the surface of microcarriers. The scanning electron microscopy (SEM), water contact angle measurement, and energy-dispersive X-ray spectroscopy (EDX) was used to analyse the surface morphology of PLL-modified PLGA microcarriers (PLL@PLGA) and their ability to promote mineralization. At the same time, the growth factor binding efficiency and antimicrobial activity of the microcarriers were studied. The effects of microcarriers on cell behaviors were evaluated by cultivating MC3T3-E1 cells on different microcarriers. The results showed that the hydrophilicity, protein adsorption, and mineralization induction capability of the microcarriers were significantly improved by PLL surface modification. The biological experiments revealed that BMP-7 and ponericin G1 immobilized-PLL modified microcarriers can effectively inhibit the proliferation of pathogenic microorganisms while enhancing the ability of the microcarriers to promote cell proliferation and osteogenesis differentiation. Therefore, we believe that PLL-modified PLGA cell microcarriers loaded with BMP-7 and ponericin G1 (PLL@PLGA/BMP-7/ponericin G1) have great potential in the field of bone repair.
Collapse
Affiliation(s)
- Hanyang Zhang
- a Department of Orthopedic Surgery, The Second Hospital of Jilin University , Changchun , PR China
| | - Jianhang Jiao
- a Department of Orthopedic Surgery, The Second Hospital of Jilin University , Changchun , PR China
| | - Hui Jin
- a Department of Orthopedic Surgery, The Second Hospital of Jilin University , Changchun , PR China
| |
Collapse
|
21
|
Verma I, Devi M, Sharma D, Nandi R, Pal SK. Liquid Crystal based Detection of Pb(II) Ions Using Spinach RNA as Recognition Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7816-7823. [PMID: 31117720 DOI: 10.1021/acs.langmuir.8b04018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report a new method for label-free, sensitive, and facile detection of lead(II) ions (Pb2+) based on an aptamer-target binding event, which is recognized by orientations of liquid crystals (LCs) at aqueous interfaces. The LC film suspended in the aqueous phase demonstrated a homeotropic orientation in contact with a cationic surfactant cetyltrimethylammonium bromide (CTAB) due to self-assembly of CTAB molecules at the aqueous-LC interface. The ordering of LC subsequently changed to planar in the presence of the spinach RNA aptamer (SRNA) due to interactions between CTAB and SRNA. In the presence of the Pb2+ ion, the ordering of LC changed to homeotropic caused by reorganization of CTAB at the LC-aqueous interface. This is due to formation of more stable quadruplex structures of SRNA with Pb2+ ions in comparison to the CTAB-SRNA complex. The sensor exhibited a detection limit of 3 nM, which is well below the permissible limit of Pb2+ in drinking water. Our experiments establish that addition of Pb2+ leads to (i) the formation of Pb2+-SRNA complexes and (ii) a decrease in density of SRNA on the LC interface, but additional studies are required to determine which of these processes underlie the response of the LCs to the Pb2+. We have also demonstrated the potential application of the LC sensor for detection of Pb2+ in tap water. Unlike current laboratory-based heavy-metal-ion assays, this method is comparatively simple in terms of instrumentation, operation, and optical readout.
Collapse
Affiliation(s)
- Indu Verma
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali (IISERM) , Knowledge City, Sector-81 , SAS Nagar, Mohali 140306 , India
| | - Manisha Devi
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali (IISERM) , Knowledge City, Sector-81 , SAS Nagar, Mohali 140306 , India
| | - Diksha Sharma
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali (IISERM) , Knowledge City, Sector-81 , SAS Nagar, Mohali 140306 , India
| | - Rajib Nandi
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali (IISERM) , Knowledge City, Sector-81 , SAS Nagar, Mohali 140306 , India
| | - Santanu Kumar Pal
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali (IISERM) , Knowledge City, Sector-81 , SAS Nagar, Mohali 140306 , India
| |
Collapse
|
22
|
Yang X, Tian Y, Li F, Yu Q, Tan SF, Chen Y, Yang Z. Investigation of the Assembly Behavior of an Amphiphilic Lipopeptide at the Liquid Crystal-Aqueous Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2490-2497. [PMID: 30696245 DOI: 10.1021/acs.langmuir.8b03294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this article, we designed an amphiphilic lipopeptide molecule, 5(6)-carboxyfluorescein-KKKKKKSKTK-Cys(C12H25)-OMe (FAM-lipopeptide-C12), and studied its assembly behavior at the 4-cyano-4'-pentylbiphenyl (5CB)-aqueous interface. The ordering transitions of liquid crystals (LCs) revealed that FAM-lipopeptide-C12 can assemble at the LC-aqueous interface (both planar and curved interfaces). The assembly can be destroyed by adding trypsin, which catalyzes the hydrolysis of lipopeptides. Fluorescence measurements further confirmed the assembly and deassembly behavior of FAM-lipopeptide-C12 at the LC-aqueous interface. Overall, our work provides a general method for the construction of a biointerface by directly assembling amphiphilic lipopeptides at the LC-aqueous interface, which can potentially be used in selectively detecting the activity of specific enzymes and other biomolecular interactions.
Collapse
|
23
|
Zhou L, Hu Q, Kang Q, Fang M, Yu L. Construction of a Liquid Crystal-Based Sensing Platform for Sensitive and Selective Detection of l-Phenylalanine Based on Alkaline Phosphatase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:461-467. [PMID: 30576146 DOI: 10.1021/acs.langmuir.8b03682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The detection of l-phenylalanine (l-Phe) has become one of the most pressing issues concerning diagnosis and treatment of phenylketonuria in neonates; however, a simple and robust methodology is yet to be developed. Here, the application of novel liquid crystals (LCs)-sensing platform for sensitive, selective, and label-free detection of l-Phe was reported at the first time. We devised a strategy to fabricate the sodium monododecyl phosphate (SMP)-decorated LC sensing platform with the appearance of dark. Then, a dark to bright (D-B) optical images alteration of LCs was observed after transferring alkaline phosphatase (ALP) to the interface, owing to cleavage of SMP induced by ALP. LCs remained dark images after the SMP-decorated interface in contact with the pre-incubated ALP and l-Phe. Such optical appearance resulted from the inhibition of ALP by l-Phe, which was further verified by the isothermal titration calorimetry (ITC). The strategy was applied to sensing l-Phe, which have been proven to allow for sensitively and selectively differentiation of l-Phe from interfering compounds with similar aromatic groups, as well as seven other essential amino acids. More importantly, the detection limit of l-Phe reached 1 pg/mL in urine samples, further demonstrating its value in the practical applications. Results obtained in this study clearly demonstrated the superiority of LCs toward the l-Phe detection, which can pave a way for the development of high performance and robust probes for l-Phe detection in clinical applications.
Collapse
Affiliation(s)
- Lele Zhou
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| | - Qiongzheng Hu
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Ming Fang
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| |
Collapse
|